A Decade of Progress on Solid-State Electrolytes for Secondary Batteries: Advances and Contributions

被引:107
作者
Sheng, Ouwei [1 ]
Jin, Chengbin [1 ]
Ding, Xufen [2 ,3 ]
Liu, Tiefeng [1 ]
Wan, Yuehua [2 ,3 ]
Liu, Yujing [1 ]
Nai, Jianwei [1 ]
Wang, Yao [1 ]
Liu, Chuntai [4 ]
Tao, Xinyong [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Peoples R China
[2] Zhejiang Univ Technol, Lib, Hangzhou 310014, Peoples R China
[3] Zhejiang Univ Technol, Inst Informat Resource, Hangzhou 310014, Peoples R China
[4] Zhengzhou Univ, Minist Educ, Key Lab Mat Proc & Mold, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
all‐ solid‐ state batteries; interface; ionic conductivity; metal anodes; state electrolytes; LITHIUM-SULFUR BATTERIES; HIGH IONIC-CONDUCTIVITY; COMPOSITE POLYMER ELECTROLYTE; INTERFACIAL RESISTANCE; METAL BATTERIES; ELECTROCHEMICAL PERFORMANCE; MECHANICAL PROPERTY; CHEMICAL-STABILITY; HYBRID ELECTROLYTE; TEMPERATURE-RANGE;
D O I
10.1002/adfm.202100891
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Compared with conventional liquid batteries, all-solid-state batteries (ASSBs) show great promise for enabling higher safety in electric vehicles without compromising operational durability and range. As a key component of ASSBs, solid-state electrolytes (SSEs) need high ionic conductivity and favorable interfacial compatibility between electrodes and SSEs. In the recent decade, numerous efforts have been devoted to SSE advancement and fruitful achievements have been made, particularly regarding metal anode-oriented SSEs with high energy density. This review focuses on the historical process of SSEs employed in ASSBs. The new understanding and origins for the enhanced ionic conductivity and mechanical properties of SSEs are first summarized. As to the cathode/SSE interface, its decomposition mechanism and modification strategies are analyzed. As to the interfacial issues of SSEs with anodes, the mechanisms of dendrite formation and penetration into the SSEs are discussed in detail. Additionally, assisted by a library of big data sources, contributions are systematically highlighted from different countries, institutions, and corresponding authors to significantly advance SSE progress, and certain insights are provided into the underlying relationships between various items in a collective manner. Finally, current challenges and potential strategies are identified for the future development of SSEs in ASSBs.
引用
收藏
页数:25
相关论文
共 194 条
  • [1] Ion transport and phase transition in Li7-xLa3(Zr2-xMx)O12 (M = Ta5+, Nb5+, x=0, 0.25)
    Adams, Stefan
    Rao, Rayavarapu Prasada
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (04) : 1426 - 1434
  • [2] Understanding the Chemical Stability of Polymers for Lithium-Air Batteries
    Amanchukwu, Chibueze V.
    Harding, Jonathon R.
    Shao-Horn, Yang
    Hammond, Paula T.
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (02) : 550 - 561
  • [3] [Anonymous], 1957, ANN CHIM PARIS
  • [4] Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
    Bachman, John Christopher
    Muy, Sokseiha
    Grimaud, Alexis
    Chang, Hao-Hsun
    Pour, Nir
    Lux, Simon F.
    Paschos, Odysseas
    Maglia, Filippo
    Lupart, Saskia
    Lamp, Peter
    Giordano, Livia
    Shao-Horn, Yang
    [J]. CHEMICAL REVIEWS, 2016, 116 (01) : 140 - 162
  • [5] Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics
    Bernuy-Lopez, Carlos
    Manalastas, William, Jr.
    Lopez del Amo, Juan Miguel
    Aguadero, Ainara
    Aguesse, Frederic
    Kilner, John A.
    [J]. CHEMISTRY OF MATERIALS, 2014, 26 (12) : 3610 - 3617
  • [6] Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte
    Chen, Long
    Fan, Li-Zhen
    [J]. ENERGY STORAGE MATERIALS, 2018, 15 : 37 - 45
  • [7] PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"
    Chen, Long
    Li, Yutao
    Li, Shuai-Peng
    Fan, Li-Zhen
    Nan, Ce-Wen
    Goodenough, John B.
    [J]. NANO ENERGY, 2018, 46 : 176 - 184
  • [8] Sulfur-nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode
    Chen, Mei
    Zheng, Jianhui
    Sheng, Ouwei
    Jin, Chengbin
    Yuan, Huadong
    Liu, Tiefeng
    Liu, Yujing
    Wang, Yao
    Nai, Jianwei
    Tao, Xinyong
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (31) : 18267 - 18274
  • [9] The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons
    Chen, Renjie
    Qu, Wenjie
    Guo, Xing
    Li, Li
    Wu, Feng
    [J]. MATERIALS HORIZONS, 2016, 3 (06) : 487 - 516
  • [10] Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application
    Chen, Shaojie
    Xie, Dongjiu
    Liu, Gaozhan
    Mwizerwa, Jean Pierre
    Zhang, Qiang
    Zhao, Yanran
    Xu, Xiaoxiong
    Yao, Xiayin
    [J]. ENERGY STORAGE MATERIALS, 2018, 14 : 58 - 74