Kronecker's approximation theorem

被引:21
作者
Gonek, Steven M. [1 ]
Montgomery, Hugh L. [2 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2016年 / 27卷 / 02期
基金
美国国家科学基金会;
关键词
Kronecker; Chebyshev; Fejer; Peak function; VIEW-OBSTRUCTION PROBLEMS; PRINCIPLE;
D O I
10.1016/j.indag.2016.02.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review the various proofs of Kronecker's theorem concerning inhomogeneous Diophantine approximation, we discuss in detail the quantitative approaches of Turan (1960) and Chen (2000), and we derive strong localized versions of these theorems. (C) 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:506 / 523
页数:18
相关论文
共 61 条
  • [1] [Anonymous], 1932, J LONDON MATH SOC
  • [2] [Anonymous], 1987, NACHR GES WISS GO MP, V8, P49
  • [3] [Anonymous], 1952, COLL MATH WORKS, V3
  • [4] [Anonymous], 1995, Grad. Texts in Math.
  • [5] [Anonymous], 1948, Izvestiya Akad. Nauk SSSR. Ser. Mat.
  • [6] [Anonymous], 1994, CLASSICS APPL MATH
  • [7] An extension of Kronecker's theorem
    Bacon, HM
    [J]. ANNALS OF MATHEMATICS, 1934, 35 : 776 - 786
  • [8] Baker R.C., 1986, DIPPHANTINE INEQUALI
  • [9] Note on a diophantine inequality in several variables
    Barton, JT
    Montgomery, HL
    Vaaler, JD
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (02) : 337 - 345
  • [10] Bohr H, 1923, P LOND MATH SOC, V21, P315