3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries

被引:128
作者
Liu, Boyang [1 ,2 ]
Zhang, Lei [1 ,2 ]
Xu, Shaomao [1 ,2 ]
McOwen, Dennis W. [1 ,2 ]
Gong, Yunhui [1 ,2 ]
Yang, Chunpeng [1 ,2 ]
Pastel, Glenn R. [1 ,2 ]
Xie, Hua [1 ,2 ]
Fu, Kun [1 ,2 ]
Dai, Jiaqi [1 ,2 ]
Chen, Chaoji [1 ,2 ]
Wachsman, Eric D. [1 ,2 ]
Hu, Liangbing [1 ,2 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, TX 20742 USA
[2] Maryland Energy Innovat Inst, College Pk, TX 20742 USA
关键词
Li metal battery; solid-state electrolyte; Li metal host; garnet; 3D framework; LI ION CONDUCTORS; SUPERIONIC CONDUCTOR; ELASTIC PROPERTIES; ELECTROLYTE; LI7LA3ZR2O12; CHALLENGES; MATRIX;
D O I
10.1016/j.ensm.2018.04.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state electrolytes (SSEs) have been widely studied to enable applications of high-energy Li metal anodes in batteries with high safety and stable performance. However, integration of SSEs into batteries is hindered by the infinite volume change of Li metal anodes upon cycling, the unstable resistance between Li and SSE, and low battery energy densities. To address these challenges, we developed a porous-dense bilayer structured garnet SSE as a 3D ionic framework for Li metal. The framework consists of one porous layer as a volume-stable host of Li metal with a large contact area, and one dense layer as a solid-state separator preventing short-circuits. The flatness of the dense layer enables simple battery manufacturing by laying a pre-made cathode on top of the bilayer framework. The thicknesses of the porous and dense layers are well controlled at 50 and 20 mu m, respectively, to improve the battery energy density. Based on the bilayer garnet framework and highly loaded Li(Ni0.5Mn0.3Co0.2)O-2 (NMC) cathodes (32 mg/cm(2)), we developed solid-state Li-NMC batteries with energy densities (329 Wh/kg and 972 Wh/L) significantly higher than all of the state-of-art garnet-based Li metal batteries. The bilayer framework design provides a promising strategy towards solid-state Li metal batteries with high energy densities because of its well-optimized thickness, stable cycling performance, and feasibility to be integrated with high-energy cathodes.
引用
收藏
页码:376 / 382
页数:7
相关论文
共 37 条
[1]  
[Anonymous], ADV FUNCT MAT
[2]   A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Wei, Fei ;
Zhang, Ji-Guang ;
Zhang, Qiang .
ADVANCED SCIENCE, 2016, 3 (03)
[3]   Elastic Properties of Alkali Superionic Conductor Electrolytes from First Principles Calculations [J].
Deng, Zhi ;
Wang, Zhenbin ;
Chu, Iek-Heng ;
Luo, Jian ;
Ong, Shyue Ping .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) :A67-A74
[4]  
Han XG, 2017, NAT MATER, V16, P572, DOI [10.1038/nmat4821, 10.1038/NMAT4821]
[5]   3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries [J].
Jin, Chengbin ;
Sheng, Ouwei ;
Luo, Jianmin ;
Yuan, Huadong ;
Fang, Cong ;
Zhang, Wenkui ;
Huang, Hui ;
Gan, Yongping ;
Xia, Yang ;
Liang, Chu ;
Zhang, Jun ;
Tao, Xinyong .
NANO ENERGY, 2017, 37 :177-186
[6]   Issues and Challenges for Bulk-Type All-Solid-State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes [J].
Jung, Yoon Seok ;
Oh, Dae Yang ;
Nam, Young Jin ;
Park, Kern Ho .
ISRAEL JOURNAL OF CHEMISTRY, 2015, 55 (05) :472-485
[7]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/nmat3066, 10.1038/NMAT3066]
[8]   Review-Practical Challenges Hindering the Development of Solid State Li Ion Batteries [J].
Kerman, Kian ;
Luntz, Alan ;
Viswanathan, Venkatasubramanian ;
Chiang, Yet-Ming ;
Chen, Zhebo .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) :A1731-A1744
[9]   Inorganic solid Li ion conductors: An overview [J].
Knauth, Philippe .
SOLID STATE IONICS, 2009, 180 (14-16) :911-916
[10]   An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes [J].
Li, Nian-Wu ;
Yin, Ya-Xia ;
Yang, Chun-Peng ;
Guo, Yu-Guo .
ADVANCED MATERIALS, 2016, 28 (09) :1853-1858