Preparation of broadband transparent Si3N4-SiO2 ceramics by digital light processing (DLP) 3D printing technology

被引:76
作者
Chen, Rufei [1 ,2 ]
Duan, Wenyan [1 ]
Wang, Gong [1 ]
Liu, Bingshan [1 ]
Zhao, Yantong [1 ,2 ]
Li, Shan [1 ]
机构
[1] Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Mfg Technol SMT, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Broadband transparent material; Si3N4-SiO2; 3D printing; Photocuring; SILICON-NITRIDE CERAMICS; FABRICATION; OXYNITRIDE; STRENGTH;
D O I
10.1016/j.jeurceramsoc.2021.04.045
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Wave-transmitting materials are a kind of multi-functional materials that protect the normal operation of communication and guidance systems of spacecraft in harsh environments. In this paper, we fabricate a broadband microwave transparent Si3N4-SiO2 composite ceramic with excellent performance through digital light processing (DLP) 3D printing technology. The influences of sintering temperature on the weight increase rate, density, dimensional shrinkage, phase composition, microstructure, bending strength and dielectric properties of Si3N4-SiO2 ceramic were all systematically studied. The strength of Si3N4-SiO2 ceramic sintered at 1350 degrees C was 77 +/- 5 MPa. The relative permittivity of the ceramic is within the range of less than 4, and the loss tangent can be below 0.003. The 3D printed Si3N4-SiO2 ceramic material exhibited excellent wave-transparent performance.
引用
收藏
页码:5495 / 5504
页数:10
相关论文
共 35 条
[1]   SI3N4 AND SI2N2O FOR HIGH-PERFORMANCE RADOMES [J].
BARTA, J ;
MANELA, M ;
FISCHER, R .
MATERIALS SCIENCE AND ENGINEERING, 1985, 71 (1-2) :265-272
[2]  
Cao C., 2019, IOP C SER MAT SCI EN, V678, P012
[3]   Mechanical and dielectric properties of silicon nitride ceramics with high and hierarchical porosity [J].
Chen, Fei ;
Cao, Feng ;
Pan, Haoliang ;
Wang, Kaiyu ;
Shen, Qiang ;
Li, Jialiang ;
Wang, Siqing .
MATERIALS & DESIGN, 2012, 40 :562-566
[4]  
Ching WY, 2002, J AM CERAM SOC, V85, P11, DOI 10.1111/j.1151-2916.2002.tb00030.x
[5]  
Chuanbing Cheng, 2015, Key Engineering Materials, V655, P6, DOI 10.4028/www.scientific.net/KEM.655.6
[6]   Characterisation of porous silicon nitride materials produced with starch [J].
Díaz, A ;
Hampshire, S .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (02) :413-419
[7]   Thermal stability of in situ formed Si3N4-Si2N2O-TiN composites [J].
Duan, RG ;
Roebben, G ;
Vleugels, J ;
Van der Biest, O .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2002, 22 (14-15) :2527-2535
[8]   CONTRIBUTION TO PHASE-DIAGRAM SI3N4-ALN-AL2O3-SIO2 [J].
GAUCKLER, LJ ;
LUKAS, HL ;
PETZOW, G .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1975, 58 (7-8) :346-347
[9]  
Griffith ML, 1996, J AM CERAM SOC, V79, P2601, DOI 10.1111/j.1151-2916.1996.tb09022.x
[10]   Synthesis and characterization of silicon carbide, silicon oxynitride and silicon nitride nanowires [J].
Gundiah, G ;
Madhav, GV ;
Govindaraj, A ;
Seikh, MM ;
Rao, CNR .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (05) :1606-1611