Bifurcation of limit cycles near equivariant compound cycles

被引:4
作者
Han, Mao-an [1 ]
Zhang, Tong-hua [1 ]
Zang, Hong [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2007年 / 50卷 / 04期
关键词
equivariant system; stability; bifurcation; limit cycle;
D O I
10.1007/s11425-007-2037-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study some equivariant systems on the plane. We first give some criteria for the outer or inner stability of compound cycles of these systems. Then we investigate the number of limit cycles which appear near a compound cycle of a Hamiltonian equivariant system under equivariant perturbations. In the last part of the paper we present an application of our general theory to show that a Z(3) equivariant system can have 13 limit cycles.
引用
收藏
页码:503 / 514
页数:12
相关论文
共 11 条
[1]   Existence and bifurcation of integral manifolds with applications [J].
Han, M ;
Chen, XF .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (07) :940-957
[2]   On the stability of double homoclinic and heteroclinic cycles [J].
Han, M ;
Hu, SC ;
Liu, XB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 53 (05) :701-713
[3]  
Han M., 1992, Acta Mech. Sin. (Beijing), V35, P673
[4]  
LI J, 1989, CHAOS MELNIKOV FUNCT
[5]  
Li J., 1991, PUBL MAT, V35, P487
[6]  
LI J, 1991, ORDINARY DELAY DIFFE, P116
[7]   Hilbert's 16th problem and bifurcations of planar polynomial vector fields [J].
Li, JB .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01) :47-106
[8]  
Li JB, 2002, SCI CHINA SER A, V45, P817
[9]   Investigations of bifurcations of limit cycles in Z2-equivariant planar vector fields of degree 5 [J].
Li, JB ;
Chan, HSY ;
Chung, KW .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (10) :2137-2157
[10]   Codimension 3 nonresonant bifurcations of homoclinic orbits with two inclination flips [J].
Shui, SL ;
Zhu, DM .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (02) :248-260