An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines

被引:64
作者
Ata, R. [2 ]
Kocyigit, Y. [1 ]
机构
[1] Celal Bayar Univ, Dept Elect & Elect Engn, Muradiye, Manisa, Turkey
[2] Celal Bayar Univ, Dept Elect, TR-45700 Kirkagac, Manisa, Turkey
关键词
Wind turbines; Tip speed ratio; Adaptive neuro-fuzzy inference system (ANFIS); Artificial neural-networks (ANN); Prediction;
D O I
10.1016/j.eswa.2010.02.068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces an adaptive neuro-fuzzy inference system (ANFIS) model to predict the tip speed ratio (TSR) and the power factor of a wind turbine. This model is based on the parameters for LS-1 and NACA4415 profile types with 3 and 4 blades. In model development, profile type, blade number, Schmitz coefficient, end loss, profile type loss, and blade number loss were taken as input variables, while the TSR and power factor were taken as output variables. After a successful learning and training process, the proposed model produced reasonable mean errors. The results indicate that the errors of ANFIS models in predicting TSR and power factor are less than those of the ANN method. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5454 / 5460
页数:7
相关论文
共 17 条
  • [1] Developing a multipurpose sun tracking system using fuzzy control
    Alata, M
    Al-Nimr, MA
    Qaroush, Y
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2005, 46 (7-8) : 1229 - 1245
  • [2] Cam E., 2006, Turkish Journal of Engineering and Environmental Sciences, V30, P35
  • [3] Cetin N. S., 2005, Mathematical & Computational Applications, V10, P147
  • [4] GASCH R, 1996, WINDKRAFTANLANGEN
  • [5] HAU E, 1996, WINDKRAFTANLANGEN
  • [6] ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM
    JANG, JSR
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03): : 665 - 685
  • [7] NEURO-FUZZY MODELING AND CONTROL
    JANG, JSR
    SUN, CT
    [J]. PROCEEDINGS OF THE IEEE, 1995, 83 (03) : 378 - 406
  • [8] Application of fuzzy inference system in the prediction of wave parameters
    Kazeminezhad, MH
    Etemad-Shahidi, A
    Mousavi, SJ
    [J]. OCEAN ENGINEERING, 2005, 32 (14-15) : 1709 - 1725
  • [9] Kosko B., 1991, NEURAL NETWORKS FUZZ
  • [10] Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system
    Mellit, A.
    Kalogirou, S. A.
    Shaari, S.
    Salhi, H.
    Arab, A. Hadj
    [J]. RENEWABLE ENERGY, 2008, 33 (07) : 1570 - 1590