A new critical plane-energy model for multiaxial fatigue life prediction of turbine disc alloys

被引:58
作者
Xu, Shen [1 ]
Zhu, Shun-Peng [1 ,2 ]
Hao, Yong-Zhen [1 ]
Liao, Ding [1 ]
Qian, Guian [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Ctr Syst Reliabil & Safety, Chengdu 611731, Sichuan, Peoples R China
[3] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Multiaxial fatigue; Virtual strain energy; Critical plane; Mean stress; Life prediction; CRITICAL DISTANCE; RELIABILITY-ANALYSIS; LCF LIFE; FAILURES; DESIGN;
D O I
10.1016/j.engfailanal.2018.07.001
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
For engine components under complex loadings, multiaxial fatigue life prediction is critical for ensuring their structural integrity and reliability. Combining the critical plane method with the virtual strain energy concept, a new multiaxial fatigue damage parameter is proposed to characterize the influence of both shear/normal mean stress and non-proportional hardening on fatigue life. Particularly, no extra material constants are needed for model application. Experimental data of TC4 and GH4169 alloys under various loading paths are utilized to evaluate and validate the proposed damage parameter as well as four other models. Results show that the proposed damage parameter yields a higher accuracy on multiaxial fatigue life prediction than others.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 53 条
[1]  
Brown M. W., 1973, Proceedings of the Institution of Mechanical Engineers, V187, P745
[2]   FATIGUE DAMAGE CALCULATION USING THE CRITICAL PLANE APPROACH [J].
CHU, CC .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1995, 117 (01) :41-49
[3]   A generalization of the fatigue Kohout-Vechet model for several fatigue damage parameters [J].
Correia, J. A. F. O. ;
Raposo, P. ;
Muniz-Calvente, M. ;
Blason, S. ;
Lesiuk, G. ;
De Jesus, A. M. P. ;
Moreira, P. M. G. P. ;
Calcada, R. A. B. ;
Canteli, A. F. .
ENGINEERING FRACTURE MECHANICS, 2017, 185 :284-300
[4]   MULTIAXIAL FATIGUE DAMAGE CRITERION [J].
ELLYIN, F ;
GOLOS, K .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1988, 110 (01) :63-68
[5]   A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT-OF-PHASE LOADING [J].
FATEMI, A ;
SOCIE, DF .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1988, 11 (03) :149-165
[6]  
Findley W.N., 1956, PROC SOC EXPT STRESS, V14, P35
[7]   A NEW APPROACH TO THE EVALUATION OF FATIGUE UNDER MULTIAXIAL LOADINGS [J].
GARUD, YS .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1981, 103 (02) :118-125
[8]  
GLINKA G, 1995, FATIGUE FRACT ENG M, V18, P755, DOI 10.1111/j.1460-2695.1995.tb00901.x
[9]   Combined fatigue experiments on full scale turbine components [J].
Hu, Dianyin ;
Wang, Rongqiao .
AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2013, 85 (01) :4-9
[10]   A mean stress correction model for tensile and compressive mean stress fatigue loadings [J].
Ince, A. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2017, 40 (06) :939-948