On the dependence of the Berry-Esseen bound on dimension

被引:94
作者
Bentkus, V [1 ]
机构
[1] Vilnius Inst Math & Informat, LT-232600 Vilnius, Lithuania
关键词
multidimensional; Berry-Esseen bound; dependence on dimension;
D O I
10.1016/S0378-3758(02)00094-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X be a random vector with values in R-d. Assume that X has mean zero and identity covariance. Write beta = E\X\(3). Let S-n be a normalized sum of n independent copies of X. For Delta(n) = sup(Ais an element ofC) \P{Sn is an element of A} - v(A)\, where C is the class of convex subsets of R-d, and v is the standard d-dimensional normal distribution, we prove a Berry-Esseen bound Delta(n) less than or equal to 400d(1/4) beta/rootn. Whether one can remove or replace the factor d(1/4) by a better one (eventually by 1), remains an open question. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:385 / 402
页数:18
相关论文
共 14 条
[1]  
[Anonymous], 1998, NORMAL APPROXIMATION
[2]   THE REVERSE ISOPERIMETRIC PROBLEM FOR GAUSSIAN MEASURE [J].
BALL, K .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 10 (04) :411-420
[3]  
BENTKUS V, 1986, THEOR PROBAB APPL, V31, P710
[4]  
BENTKUS V. Y., 1986, LITOVSK MAT SB, V26, P205
[5]  
Bhattacharya R. N., 1986, Normal Approximation and Asymptotic Expansions
[6]   ON THE RATE OF CONVERGENCE IN THE MULTIVARIATE CLT [J].
GOTZE, F .
ANNALS OF PROBABILITY, 1991, 19 (02) :724-739
[7]  
NAGAEV SV, 1976, LECT NOTES MATH, P419
[8]  
NAZAROV F, 2001, UNPUB MAXIMAL PERIME, V2, P1
[9]  
NAZAROV F, 2001, UNPUB ASYMPTOTIC BEH, P1
[10]  
Paulauskas V. I., 1989, APPROXIMATION THEORY