Asymptotics of maximum likelihood estimators based on Markov chain Monte Carlo methods

被引:0
作者
Miasojedow, Blazej [1 ]
Niemiro, Wojciech [1 ,2 ]
Rejchel, Wojciech [2 ]
机构
[1] Univ Warsaw, Inst Appl Math & Mech, Warsaw, Poland
[2] Nicolaus Copernicus Univ, Fac Math & Comp Sci, Torun, Poland
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2021年 / 57卷 / 02期
关键词
Intractable normalizing constant; Markov chain; Maximum likelihood estimation; Missing data model; Monte Carlo method; CONVERGENCE;
D O I
10.1214/20-AIHP1097
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In complex statistical models, in which exact computation of the likelihood is intractable, Monte Carlo methods can be applied to approximate maximum likelihood estimates. In this paper we consider approximation obtained via Markov chain Monte Carlo. We prove consistency and asymptotic normality of the resulting estimator, when both sample sizes (the initial and Monte Carlo one) tend to infinity. Our results can be applied to models with intractable normalizing constants and missing data models. We also investigate properties of estimators in numerical experiments.
引用
收藏
页码:815 / 829
页数:15
相关论文
共 27 条
  • [1] Attouch H, 1984, VARIATIONAL CONVERGE
  • [2] BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
  • [3] MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED DIFFUSION PROCESSES
    Beskos, Alexandros
    Papaspiliopoulos, Omiros
    Roberts, Gareth
    [J]. ANNALS OF STATISTICS, 2009, 37 (01) : 223 - 245
  • [4] On the convergence of the Monte Carlo maximum likelihood method for latent variable models
    Cappé, O
    Douc, R
    Moulines, E
    Robert, C
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (04) : 615 - 635
  • [5] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [6] Ferguson TS., 1996, A course in large sample theory, DOI [DOI 10.1007/978-1-4899-4549-5, 10.1007/978-1-4899-4549-5]
  • [7] Fort G, 2003, ANN STAT, V31, P1220
  • [8] MAXIMUM-LIKELIHOOD-ESTIMATION FOR CONSTRAINED-DATA OR MISSING-DATA MODELS
    GELFAND, AE
    CARLIN, BP
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1993, 21 (03): : 303 - 311
  • [9] GEYER CJ, 1992, J R STAT SOC B, V54, P657
  • [10] GEYER CJ, 1994, J ROY STAT SOC B MET, V56, P261