Simplified electrochemical multi-particle model for LiFePO4 cathodes in lithium-ion batteries

被引:84
作者
Majdabadi, Mehrdad Mastali [1 ]
Farhad, Siamak [2 ]
Farkhondeh, Mohammad [3 ]
Fraser, Roydon A. [1 ]
Fowler, Michael [3 ]
机构
[1] Univ Waterloo, Mech & Mechatron Engn Dept, Waterloo, ON N2L 3G, Canada
[2] Univ Akron, Dept Mech Engn, Akron, OH 44325 USA
[3] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
关键词
Lithium-ion battery; LiFePO4; Reduced-order model; Simplified electrochemical multi-particle model; SINGLE-PARTICLE MODEL; PROPER ORTHOGONAL DECOMPOSITION; IRON-PHOSPHATE ELECTRODE; CHARGE-DISCHARGE RATES; MATHEMATICAL-MODEL; THERMAL-MODEL; PHYSICS; SIMULATION; CELL; REDUCTION;
D O I
10.1016/j.jpowsour.2014.11.066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simplified physics-based model is developed to predict the performance of an LiFePO4 cathode at various operating and design conditions. Newman's full-order porous-electrode model is simplified using polynomial approximations for electrolyte variables at the electrode-level while a multi-particle model featuring variable solid-state diffusivity is employed at the particle level. The computational time of this reduced-order model is decreased by almost one order of magnitude compared to the full-order model without sacrificing the accuracy of the results. The model is general and can be used to expedite the simulation of any composite electrode with active-material particles of non-uniform properties (e.g., size, contact resistance, material chemistry etc.). In a broader perspective, this model is of practical value for electric vehicle power train simulations and battery management systems. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:633 / 643
页数:11
相关论文
共 44 条
[1]   DYNAMIC ASPECTS OF SOLID-SOLUTION CATHODES FOR ELECTROCHEMICAL POWER SOURCES [J].
ATLUNG, S ;
WEST, K ;
JACOBSEN, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (08) :1311-1321
[2]   Numerical simulation of thermal behavior of lithium-ion secondary batteries using the enhanced single particle model [J].
Baba, Naoki ;
Yoshida, Hiroaki ;
Nagaoka, Makoto ;
Okuda, Chikaaki ;
Kawauchi, Shigehiro .
JOURNAL OF POWER SOURCES, 2014, 252 :214-228
[3]   Phase-transformation wave dynamics in LiFePO4 [J].
Burch, Damian ;
Singh, Gogi ;
Ceder, Gerbrand ;
Bazant, Martin Z. .
THEORY, MODELING AND NUMERICAL SIMULATION OF MULTI-PHYSICS MATERIALS BEHAVIOR, 2008, 139 :95-+
[4]   Size-Dependent Spinodal and Miscibility Gaps for Intercalation in Nanoparticles [J].
Burch, Damian ;
Bazant, Martin Z. .
NANO LETTERS, 2009, 9 (11) :3795-3800
[5]   An Efficient Electrochemical-Thermal Model for a Lithium-Ion Cell by Using the Proper Orthogonal Decomposition Method [J].
Cai, Long ;
White, Ralph E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (11) :A1188-A1195
[6]   Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery Simulations [J].
Cai, Long ;
White, Ralph E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (03) :A154-A161
[7]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[8]  
COMSOL Inc, 2014, COMSOL MULT US GUID
[9]   Simplification and order reduction of lithium-ion battery model based on porous-electrode theory [J].
Dao, Thanh-Son ;
Vyasarayani, Chandrika P. ;
McPhee, John .
JOURNAL OF POWER SOURCES, 2012, 198 :329-337
[10]   Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model [J].
Dargaville, S. ;
Farrell, T. W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) :A830-A840