Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma

被引:9
作者
Wang, Guan [1 ]
Kuang, Ye [1 ]
Zhang, Yuantao [1 ]
机构
[1] Shandong Univ, Sch Elect Engn, Jinan 250061, Shandong, Peoples R China
来源
PLASMA SCIENCE & TECHNOLOGY | 2020年 / 22卷 / 01期
基金
美国国家科学基金会;
关键词
atmospheric plasmas; pulse modulation; radio-frequency discharge; PIC-MCC model; MODE;
D O I
10.1088/2058-6272/ab4d82
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The generation of a very strong peak current in the first period (PCFP) in a pulse-modulated microwave discharge has been discussed in previous studies. In this paper we focus on the transition process from a pulsed discharge to a fully continuous one driven by the pulsed microwave power source by means of a kinetic model. The computational results show that by increasing the duty cycle or voltage modulation rate (VMR), the discharge eventually becomes fully continuous and PCFP can no longer be observed. In the transition process, the distributions of the electric field, electron energy probability function (EEPF) and plasma density are discussed according to the simulation data, showing different discharge structures. The simulations indicate that many high-energy electrons with electron energy larger than 20 eV and low-energy electrons with electron energy less than 3 eV could be generated in a pulsed microwave discharge, together with a reversal electric field formed in the anode sheath when PCFP occurs. However, only medium-energy electrons could be observed in a fully continuous discharge. Therefore, by investigating the transition process the pulse-modulated microwave discharges can be further optimized for plasma applications at atmospheric pressure.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Measurements of pulsed-power modulated argon plasmas in an inductively coupled plasma source [J].
Ashida, S ;
Shim, MR ;
Lieberman, MA .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1996, 14 (02) :391-397
[2]   Numerical Model of an Argon Atmospheric Pressure RF Discharge [J].
Balcon, N. ;
Hagelaar, G. J. M. ;
Boeuf, J. P. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (05) :2782-2787
[3]   Atmospheric pressure radio frequency glow discharges in argon: effects of external matching circuit parameters [J].
Farouk, Tanvir ;
Farouk, Bakhtier ;
Gutsol, Alexander ;
Fridman, Alexander .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2008, 17 (03)
[4]   Applied plasma medicine [J].
Fridman, Gregory ;
Friedman, Gary ;
Gutsol, Alexander ;
Shekhter, Anatoly B. ;
Vasilets, Victor N. ;
Fridman, Alexander .
PLASMA PROCESSES AND POLYMERS, 2008, 5 (06) :503-533
[5]   Low temperature plasma biomedicine: A tutorial review [J].
Graves, David B. .
PHYSICS OF PLASMAS, 2014, 21 (08)
[6]  
Hbner S., 2012, J. Phys. D: Appl. Phys, V45, DOI [10.1088/0022-3727/45/5/055203, DOI 10.1088/0022-3727/45/5/055203]
[7]   Experimental and numerical study on the optimization of pulse-modulated radio-frequency discharges [J].
He, Jin ;
Hu, Jiangtian ;
Liu, Dawei ;
Zhang, Yuan-Tao .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2013, 22 (03)
[8]   The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array [J].
Hu, J. T. ;
Liu, X. Y. ;
Liu, J. H. ;
Xiong, Z. L. ;
Liu, D. W. ;
Lu, X. P. ;
Iza, F. ;
Kong, M. G. .
PHYSICS OF PLASMAS, 2012, 19 (06)
[9]   An experimental study on discharge mechanism of pulsed atmospheric pressure glow discharges [J].
Huang, Xiaojiang ;
Sun, Liqun ;
Bao, Yun ;
Zhang, Jing ;
Shi, J. J. .
PHYSICS OF PLASMAS, 2011, 18 (03)
[10]   Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges [J].
Huo, W. G. ;
Jian, S. J. ;
Yao, J. ;
Ding, Z. F. .
PHYSICS OF PLASMAS, 2014, 21 (05)