Modeling an equivalent b-value in diffusion-weighted steady-state free precession

被引:12
作者
Tendler, Benjamin C. [1 ]
Foxley, Sean [2 ]
Cottaar, Michiel [1 ]
Jbabdi, Saad [1 ]
Miller, Karla L. [1 ]
机构
[1] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Nuffield Dept Clin Neurosci, FMRIB, Oxford, England
[2] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
基金
英国医学研究理事会; 英国惠康基金;
关键词
b-value; diffusion-weighted spin-echo; diffusion-weighted steady-state free precession; Monte-Carlo; non-Gaussian diffusion; postmortem MRI; SELF-DIFFUSION; HUMAN-BRAIN; SPIN-ECHO; OPTIMIZATION; MAGNETIZATION; REGISTRATION; TRACTOGRAPHY; SENSITIVITY; ROBUST; MRI;
D O I
10.1002/mrm.28169
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Diffusion-weighted steady-state free precession (DW-SSFP) is shown to provide a means to probe non-Gaussian diffusion through manipulation of the flip angle. A framework is presented to define an effective b-value in DW-SSFP. Theory The DW-SSFP signal is a summation of coherence pathways with different b-values. The relative contribution of each pathway is dictated by the flip angle. This leads to an apparent diffusion coefficient (ADC) estimate that depends on the flip angle in non-Gaussian diffusion regimes. By acquiring DW-SSFP data at multiple flip angles and modeling the variation in ADC for a given form of non-Gaussianity, the ADC can be estimated at a well-defined effective b-value. Methods A gamma distribution is used to model non-Gaussian diffusion, embedded in the Buxton signal model for DW-SSFP. Monte-Carlo simulations of non-Gaussian diffusion in DW-SSFP and diffusion-weighted spin-echo sequences are used to verify the proposed framework. Dependence of ADC on flip angle in DW-SSFP is verified with experimental measurements in a whole, human postmortem brain. Results Monte-Carlo simulations reveal excellent agreement between ADCs estimated with diffusion-weighted spin-echo and the proposed framework. Experimental ADC estimates vary as a function of flip angle over the corpus callosum of the postmortem brain, estimating the mean and standard deviation of the gamma distribution as 1.50 center dot 10-4 mm(2)/s and 2.10 center dot 10-4 mm(2)/s. Conclusion DW-SSFP can be used to investigate non-Gaussian diffusion by varying the flip angle. By fitting a model of non-Gaussian diffusion, the ADC in DW-SSFP can be estimated at an effective b-value, comparable to more conventional diffusion sequences.
引用
收藏
页码:873 / 884
页数:12
相关论文
共 33 条
[1]   THE DIFFUSION SENSITIVITY OF FAST STEADY-STATE FREE PRECESSION IMAGING [J].
BUXTON, RB .
MAGNETIC RESONANCE IN MEDICINE, 1993, 29 (02) :235-243
[2]   ANALYTICAL SOLUTION AND VERIFICATION OF DIFFUSION EFFECT IN SSFP [J].
CARNEY, CE ;
WONG, STS ;
PATZ, S .
MAGNETIC RESONANCE IN MEDICINE, 1991, 19 (02) :240-246
[3]   Non-Gaussian diffusion imaging: a brief practical review [J].
De Santis, Silvia ;
Gabrielli, Andrea ;
Palombo, Marco ;
Maraviglia, Bruno ;
Capuani, Silvia .
MAGNETIC RESONANCE IMAGING, 2011, 29 (10) :1410-1416
[4]  
Erdelyi A, 1953, HIGH TRANSCENDENTAL, V1, P27
[5]   Improving diffusion-weighted imaging of post-mortem human brains: SSFP at 7 T [J].
Foxley, Sean ;
Jbabdi, Saad ;
Clare, Stuart ;
Lam, Wilfred ;
Ansorge, Olaf ;
Douaud, Gwenaelle ;
Miller, Karla .
NEUROIMAGE, 2014, 102 :579-589
[6]   Steady-state free precession experiments and exact treatment of diffusion in a uniform gradient [J].
Freed, DE ;
Scheven, UM ;
Zielinski, LJ ;
Sen, PN ;
Hürlimann, MD .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (09) :4249-4258
[7]   SIMULTANEOUS CALCULATION OF FLOW AND DIFFUSION SENSITIVITY IN STEADY-STATE FREE PRECESSION IMAGING [J].
GUDBJARTSSON, H ;
PATZ, S .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :567-579
[8]   THE RICIAN DISTRIBUTION OF NOISY MRI DATA [J].
GUDBJARTSSON, H ;
PATZ, S .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (06) :910-914
[9]   Convergence and Parameter Choice for Monte-Carlo Simulations of Diffusion MRI [J].
Hall, Matt G. ;
Alexander, Daniel C. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (09) :1354-1364
[10]  
Hennig J., 1991, Concepts Magn Reson, V3, P125, DOI [10.1002/cmr.1820030302, DOI 10.1002/CMR.1820030302]