Bifunctional Role of LiNO3 in Li-O2 Batteries: Deconvoluting Surface and Catalytic Effects

被引:38
|
作者
Rosy [1 ]
Akabayov, Sabine [2 ]
Leskes, Michal [2 ]
Noked, Malachi [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel
关键词
Li-O-2; batteries; lithium nitrate; carbon cathode; catalytic effect; surface passivation; suppressed oxidative damage; LI-AIR BATTERIES; X-RAY-DIFFRACTION; OXYGEN REDUCTION; LITHIUM-NITRATE; ELECTROLYTE; CELLS; PERFORMANCE; SALTS; NMR; SPECTROSCOPY;
D O I
10.1021/acsami.8b10054
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Out of the many challenges in the realization of lithium-O-2 batteries (LOB), the major is to deal with the instability of the electrolyte and the cathode interface under the stringent environment of both oxygen reduction and evolution reactions. Lithium nitrate was recently proposed as a promising salt for LOB because of its capability to stabilize the lithium anode by the formation of a solid electrolyte interphase, its low level of dissociation in aprotic solvents, and its catalytic effect toward oxygen evolution reaction (OER) in rechargeable LOB. Nevertheless, a deeper understanding of the influence of nitrate on the stability and electrochemical response of the cathode in LOB is yet to be realized. Additionally, it is well accepted that carbon instability toward oxidation therefore, it is essential to investigate the effect of electrolyte components on this side of the battery. In the present work, we show that nitrate leads to interfacial changes, which result in the formation of a surface protection domain on the carbon scaffold of LOB cathode, which helps in suppressing the oxidative damage of the carbon. This effect is conjugated with an additional electrocatalytic effect of the nitrate ion on the OER Using in operando online electrochemical mass spectroscopy, we herein deconvolute these two positive effects and show how they are dependent on nitrate concentration and the potential of cell operation. We show that a low amount of nitrate can exhibit the catalytic behavior; however, in order to harness its ability to suppress the oxidative damage and passivate the carbon surface, an excess of LiNO3 is required.
引用
收藏
页码:29622 / 29629
页数:8
相关论文
共 50 条
  • [41] Promoting Li-O2 Batteries With Redox Mediators
    Shen, Xiaoxiao
    Zhang, Shuaishuai
    Wu, Yuping
    Chen, Yuhui
    CHEMSUSCHEM, 2019, 12 (01) : 104 - 114
  • [42] Application of functionalized graphene in Li-O2 batteries
    Cui, Xinhang
    Luo, Yani
    Zhou, Yin
    Dong, Wenhao
    Chen, Wei
    NANOTECHNOLOGY, 2021, 32 (13)
  • [43] Discharge Li-O2 batteries with intermittent current
    Wang, Fangzhou
    Li, Xianglin
    JOURNAL OF POWER SOURCES, 2018, 394 : 50 - 56
  • [44] Mediating reactions at the cathode in Li-O2 batteries
    Gao, Xiangwen
    Chen, Yuhui
    Lee, Johnson
    Bruce, Peter
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [45] Systematic insight of the behavior of LiNO3 additive in Li-S batteries with gradient S loading
    Mao, Yangyang
    Li, Tianle
    Abuelgasim, Siddig
    Hao, Xiaoqian
    Xiao, Yupeng
    Li, Chongyang
    Wang, Wenju
    Li, Yuqian
    Bao, Encai
    JOURNAL OF ENERGY STORAGE, 2024, 79
  • [46] A new perspective of the ruthenium ion: a bifunctional soluble catalyst for high efficiency Li-O2 batteries
    Lee, Seon Hwa
    Kwak, Won-Jin
    Sun, Yang-Kook
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (30) : 15512 - 15516
  • [47] MWNT-supported bifunctional catalyst of β-FeOOH nanospindles for enhanced rechargeable Li-O2 batteries
    Li, Jiaxin
    Wen Weiwei
    Zou, Mingzhong
    Guan, Lunhui
    Huang, Zhigao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 639 : 428 - 434
  • [48] Protocol for fabrication of Pt/RuO2/graphene bifunctional oxygen catalyst in Li-O2 batteries
    Li, Yuejiao
    Wu, Lisha
    Ding, Yajun
    Wu, Zhong- Shuai
    STAR PROTOCOLS, 2023, 4 (04):
  • [49] Low-Cost Nickel Phosphide as an Efficient Bifunctional Cathode Catalyst for Li-O2 Batteries
    Hou, Xiaoyan
    Jiang, Yufeng
    He, Yu-Shi
    Ma, Zi-Feng
    Yang, Jun
    Yuan, Xianxia
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (11) : A2904 - A2908
  • [50] Bifunctional Au-Pd decorated MnOx nanomembranes as cathode materials for Li-O2 batteries
    Lu, Xueyi
    Zhang, Long
    Sun, Xiaolei
    Si, Wenping
    Yan, Chenglin
    Schmidt, Oliver G.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (11) : 4155 - 4160