The Comparative Study for Solving Fractional-Order Fornberg-Whitham Equation via ρ-Laplace Transform

被引:42
作者
Sunthrayuth, Pongsakorn [1 ]
Zidan, Ahmed M. [2 ,3 ]
Yao, Shao-Wen [4 ]
Shah, Rasool [5 ]
Inc, Mustafa [6 ,7 ,8 ]
机构
[1] Rajamangala Univ Technol Thanyaburi RMUTT, Fac Sci & Technol, Dept Math & Comp Sci, Pathum Thani 12110, Thailand
[2] King Khalid Univ, Dept Math, Coll Sci, POB 9004, Abha 61413, Saudi Arabia
[3] Al Azhar Univ, Dept Math, Fac Sci, Assiut 71511, Egypt
[4] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan, Peoples R China
[5] Abdul Wali Khan Univ, Dept Math, Mardan 23200, Pakistan
[6] Biruni Univ, Dept Comp Engn, TR-34096 Istanbul, Turkey
[7] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[8] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 05期
基金
中国国家自然科学基金;
关键词
rho-Laplace variational iteration method; rho-Laplace decomposition method; partial differential equation; caputo operator; fractional Fornberg-Whitham equation (FWE); VARIATIONAL ITERATION METHOD; CONSERVATION-LAWS; SHEHU TRANSFORM; DIFFERENTIAL-EQUATIONS; CALCULUS; SYSTEM;
D O I
10.3390/sym13050784
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we also introduced two well-known computational techniques for solving the time-fractional Fornberg-Whitham equations. The methods suggested are the modified form of the variational iteration and Adomian decomposition techniques by rho-Laplace. Furthermore, an illustrative scheme is introduced to verify the accuracy of the available methods. The graphical representation of the exact and derived results is presented to show the suggested approaches reliability. The comparative solution analysis via graphs also represented the higher reliability and accuracy of the current techniques.
引用
收藏
页数:15
相关论文
共 50 条
[21]   Comparison Between Two Reliable Methods for Accurate Solution of Fractional Modified Fornberg-Whitham Equation Arising in Water Waves [J].
Gupta, A. K. ;
Ray, S. Saha .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2017, 12 (04)
[22]   Solving Fractional-Order Diffusion Equations in a Plasma and Fluids via a Novel Transform [J].
Sunthrayuth, Pongsakorn ;
Alyousef, Haifa A. ;
El-Tantawy, S. A. ;
Khan, Adnan ;
Wyal, Noorolhuda .
JOURNAL OF FUNCTION SPACES, 2022, 2022
[23]   Solving and Numerical Simulations of Fractional-Order Governing Equation for Micro-Beams [J].
Yang, Aimin ;
Zhang, Qunwei ;
Qu, Jingguo ;
Cui, Yuhuan ;
Chen, Yiming .
FRACTAL AND FRACTIONAL, 2023, 7 (02)
[24]   An Efficient Technique of Fractional-Order Physical Models Involving ρ-Laplace Transform [J].
Shah, Nehad Ali ;
Dassios, Ioannis ;
El-Zahar, Essam R. R. ;
Chung, Jae Dong .
MATHEMATICS, 2022, 10 (05)
[25]   Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order [J].
Kashkari, Bothayna S. H. ;
Syam, Muhammed I. .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 290 :281-291
[26]   On solvability of a nonlocal problem for the Laplace equation with the fractional-order boundary operator [J].
Muratbekova, Moldir A. ;
Shinaliyev, Kanat M. ;
Turmetov, Batirkhan K. .
BOUNDARY VALUE PROBLEMS, 2014,
[27]   A COMPARATIVE STUDY OF SEMI-ANALYTICAL METHODS FOR SOLVING FRACTIONAL-ORDER CAUCHY REACTION-DIFFUSION EQUATION [J].
Chu, Yu-Ming ;
Shah, Nehad Ali ;
Ahmad, Hijaz ;
Chung, Jae Dong ;
Khaled, S. M. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (06)
[28]   Solving fractional pantograph delay differential equations via fractional-order Boubaker polynomials [J].
Rabiei, Kobra ;
Ordokhani, Yadollah .
ENGINEERING WITH COMPUTERS, 2019, 35 (04) :1431-1441
[29]   A Decomposition Method for a Fractional-Order Multi-Dimensional Telegraph Equation via the Elzaki Transform [J].
Shah, Nehad Ali ;
Dassios, Ioannis ;
Chung, Jae Dong .
SYMMETRY-BASEL, 2021, 13 (01) :1-12
[30]   Solving random fractional second-order linear equations via the mean square Laplace transform: Theory and statistical computing [J].
Burgos, C. ;
Cortes, J. -C. ;
Villafuerte, L. ;
Villanueva, R. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 418