The Comparative Study for Solving Fractional-Order Fornberg-Whitham Equation via ρ-Laplace Transform

被引:42
|
作者
Sunthrayuth, Pongsakorn [1 ]
Zidan, Ahmed M. [2 ,3 ]
Yao, Shao-Wen [4 ]
Shah, Rasool [5 ]
Inc, Mustafa [6 ,7 ,8 ]
机构
[1] Rajamangala Univ Technol Thanyaburi RMUTT, Fac Sci & Technol, Dept Math & Comp Sci, Pathum Thani 12110, Thailand
[2] King Khalid Univ, Dept Math, Coll Sci, POB 9004, Abha 61413, Saudi Arabia
[3] Al Azhar Univ, Dept Math, Fac Sci, Assiut 71511, Egypt
[4] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan, Peoples R China
[5] Abdul Wali Khan Univ, Dept Math, Mardan 23200, Pakistan
[6] Biruni Univ, Dept Comp Engn, TR-34096 Istanbul, Turkey
[7] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[8] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 05期
基金
中国国家自然科学基金;
关键词
rho-Laplace variational iteration method; rho-Laplace decomposition method; partial differential equation; caputo operator; fractional Fornberg-Whitham equation (FWE); VARIATIONAL ITERATION METHOD; CONSERVATION-LAWS; SHEHU TRANSFORM; DIFFERENTIAL-EQUATIONS; CALCULUS; SYSTEM;
D O I
10.3390/sym13050784
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we also introduced two well-known computational techniques for solving the time-fractional Fornberg-Whitham equations. The methods suggested are the modified form of the variational iteration and Adomian decomposition techniques by rho-Laplace. Furthermore, an illustrative scheme is introduced to verify the accuracy of the available methods. The graphical representation of the exact and derived results is presented to show the suggested approaches reliability. The comparative solution analysis via graphs also represented the higher reliability and accuracy of the current techniques.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] The Variational Iteration Transform Method for Solving the Time-Fractional Fornberg-Whitham Equation and Comparison with Decomposition Transform Method
    Shah, Nehad Ali
    Dassios, Ioannis
    El-Zahar, Essam R.
    Chung, Jae Dong
    Taherifar, Somaye
    MATHEMATICS, 2021, 9 (02) : 1 - 14
  • [2] An analytical treatment to fractional Fornberg-Whitham equation
    Al-luhaibi, Mohamed S.
    MATHEMATICAL SCIENCES, 2017, 11 (01) : 1 - 6
  • [3] The Fractional Investigation of Fornberg-Whitham Equation Using an Efficient Technique
    Khan, Hassan
    Kumam, Poom
    Nawaz, Asif
    Khan, Qasim
    Khan, Shahbaz
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 135 (01): : 259 - 273
  • [4] Non Probabilistic Solution of Fuzzy Fractional Fornberg-Whitham Equation
    Chakraverty, S.
    Tapaswini, Smita
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 103 (02): : 71 - 90
  • [5] Numerical Investigation of Fractional-Order Fornberg-Whitham Equations in the Framework of Aboodh Transformation
    Noor, Saima
    Hammad, Ma'mon Abu
    Shah, Rasool
    Alrowaily, Albandari W.
    El-Tantawy, Samir A.
    SYMMETRY-BASEL, 2023, 15 (07):
  • [6] HE'S FRACTIONAL DERIVATIVE AND ITS APPLICATION FOR FRACTIONAL FORNBERG-WHITHAM EQUATION
    Wang, Kang-Le
    Liu, San-Yang
    THERMAL SCIENCE, 2017, 21 (05): : 2049 - 2055
  • [7] Homotopy perturbation method for fractional Fornberg-Whitham equation
    Gupta, Praveen Kumar
    Singh, Mithilesh
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (02) : 250 - 254
  • [8] Alternative variational iteration method for solving the time-fractional Fornberg-Whitham equation
    Sakar, Mehmet Giyas
    Ergoren, Hilmi
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (14) : 3972 - 3979
  • [9] Numerical and analytical solution to a conformable fractional Fornberg-Whitham equation
    Enyi, Cyril D.
    Nwaeze, Eze R.
    Omaba, McSylvester E.
    MATHEMATICAL SCIENCES, 2024, 18 (02) : 167 - 180
  • [10] Modifications of the Optimal Auxiliary Function Method to Fractional Order Fornberg-Whitham Equations
    Ullah, Hakeem
    Fiza, Mehreen
    Khan, Ilyas
    Mosa, Abd Allah A.
    Islam, Saeed
    Mohammed, Abdullah
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 136 (01): : 277 - 291