Rapid fabrication of perovskite solar cells through intense pulse light annealing of SnO2 and triple cation perovskite thin films

被引:50
作者
Ghahremani, Amir H. [1 ,2 ]
Martin, Blake [3 ]
Gupta, Alexander [3 ]
Bahadur, Jitendra [4 ]
Ankireddy, Krishnamraju [1 ]
Druffel, Thad [1 ]
机构
[1] Univ Louisville, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA
[2] Univ Louisville, Dept Mech Engn, Louisville, KY 40292 USA
[3] Univ Louisville, Dept Chem Engn, Louisville, KY 40292 USA
[4] Indian Inst Technol Roorkee, Ctr Nanotechnol, Roorkee 247667, Uttar Pradesh, India
关键词
Intense pulse light; Rapid thermal annealing; Di-iodomethane; SnO2; Perovskite solar cell; HALIDE PEROVSKITES; EFFICIENCY; CH3NH3PBI3; COLLECTION; DEPOSITION; STABILITY; ENERGY; LAYERS;
D O I
10.1016/j.matdes.2019.108237
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rapid evolution of perovskite solar cells (PSCs) performance and stability has inclined the research focus towards scalable bulk fabrication through high speed and cost-effective automated methods. For the first time, intense pulsed light (IPL) is utilized to rapidly fabricate efficient PSCs through swift annealing of both the SnO2 electron transport layer (ETL) and mixed triple cation perovskite thin films. The addition of di-iodomethane (CH2I2) alkyl-halide could enhance the PSC efficiency by retarding the crystallization and improving the surface morphology of the perovskite photoactive film through supplying iodine cleaved by ultraviolet energy during IPL process. The maximum efficiency and fill factor of the PSCs fabricated by IPL annealing were 12.56% and 78.3% for the rigid glass-FTO slides, and 7.6% and 64.75% for flexible PET-ITO substrates when processed in the ambient with relative humidity of 60%, respectively. The annealed materials were characterized through Scanning electron microscopy (SEM), UV-Vis, photoluminescence (PL), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. In addition, impedance spectroscopy (IS) and current-voltage measurements were conducted to study the functionality of fabricated cells. Our results delineated the feasibility of sequential step IPL annealing on rapid fabrication of efficient PSCs which is directly applicable for scalable roll-to-roll manufacturing. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Thermal Annealing-Free SnO2 for Fully Room-Temperature-Processed Perovskite Solar Cells [J].
Xu, Zhengjie ;
Huang, Lanqin ;
Jiang, Yue ;
Li, Zhuoxi ;
Chen, Cong ;
He, Zijun ;
Liu, Jiayan ;
Fang, Yating ;
Wang, Kai ;
Zhou, Guofu ;
Liu, Jun-Ming ;
Gao, Jinwei .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (36) :41037-41044
[32]   Humidity-Controlled SnO2 Aggregation for Reliable Perovskite Solar Cell Fabrication [J].
Senba, Dai ;
Fujita, Yuki ;
Koseki, Daichi ;
Imaoka, Kentaro ;
Ida, Shintaro ;
Guo, Zhanglin ;
Matsushima, Toshinori .
ACS APPLIED ENERGY MATERIALS, 2024, 7 (20) :9491-9499
[33]   Molecularly Functionalized SnO2 Films by Carboxylic Acids for High- Performance Perovskite Solar Cells [J].
Niu, Tianqi ;
Zhen, Fuchao ;
Xie, Yue-Min ;
Yang, Tinghuan ;
Yao, Qin ;
Lu, Jing ;
Zhao, Kui ;
Yip, Hin-Lap .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (47) :52838-52848
[34]   A study on the material characteristics of low temperature cured SnO2 films for perovskite solar cells under high humidity [J].
Bahadur, Jitendra ;
Ghahremani, Amir H. ;
Martin, Blake ;
Pishgar, Sahar ;
Druffel, Thad ;
Sunkara, Mahendra K. ;
Pal, Kaushik .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (20) :18452-18461
[35]   Direct Deposition of Nonaqueous SnO2 Dispersion by Blade Coating on Perovskites for the Scalable Fabrication of p-i-n Perovskite Solar Cells [J].
Chapagain, Sashil ;
Chandrasekhar, Pakanati S. ;
McGott, Deborah ;
Bramante, Rosemary C. ;
van Hest, Maikel F. A. M. ;
Reese, Matthew O. ;
Druffel, Thad ;
Grapperhaus, Craig A. .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (10) :10477-10483
[36]   SnO2 Surface Modification and Perovskite Buried Interface Passivation by 2,5-Furandicarboxylic Acid for Flexible Perovskite Solar Cells [J].
Sun, Qing ;
Meng, Xiangxin ;
Liu, Gang ;
Duan, Shaocong ;
Hu, Die ;
Shen, Bo ;
Kang, Bonan ;
Silva, S. Ravi P. .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (45)
[37]   F-doping-Enhanced Carrier Transport in the SnO2/Perovskite Interface for High-Performance Perovskite Solar Cells [J].
Luo, Tianyuan ;
Ye, Gang ;
Chen, Xiayan ;
Wu, Hao ;
Zhang, Wenfeng ;
Chang, Haixin .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (37) :42093-42101
[38]   SnO2/ZnO Heterostructure as an Electron Transport Layer for Perovskite Solar Cells [J].
Carvalho Albuquerque, Diego Aparecido ;
Ramos, Raul ;
do Prado Ireno, Caio Eduardo ;
Martins, Everson ;
Durrant, Steven F. ;
Ribeiro Bortoleto, Jose Roberto .
MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2021, 24
[39]   Enhancing efficiency and stability of perovskite solar cells through methoxyamine hydrochloride modified SnO2 electron transport layer [J].
Chen, Pengxu ;
Pan, Weichun ;
Wang, Shibo ;
Zheng, Qingshui ;
Tong, Anling ;
He, Ruowei ;
Wu, Jihuai ;
Sun, Weihai ;
Li, Yunlong .
CHEMICAL ENGINEERING JOURNAL, 2024, 488
[40]   Modulation of SnO2 Electron-Transporting Materials in Perovskite Solar Cells [J].
Tang, Xinsheng ;
Wang, Zilong ;
Chen, Shangshang .
SOLAR RRL, 2025, 9 (13)