Strong traces for solutions to scalar conservation laws with general flux

被引:28
作者
Kwon, Young-Sam [1 ]
Vasseur, Alexis [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00205-007-0055-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider bounded weak solutions u of scalar conservation laws, not necessarily of class BV, defined in a subset ohm R+ x R. We define a strong notion of trace at the boundary of ohm reached by L-1 convergence for a large class of functionals of u, G(u). The functionals G depend on the flux function of the conservation law and on the boundary of ohm. The result holds for a general flux function and a general subset.
引用
收藏
页码:495 / 513
页数:19
相关论文
共 19 条
[1]  
AGOSHKOV VI, 1984, DOKL AKAD NAUK SSSR+, V276, P1289
[2]  
BUERGER, IN PRESS J MATH APPL
[3]   Divergence-measure fields and hyperbolic conservation laws [J].
Chen, GQ ;
Frid, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (02) :89-118
[4]   Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws [J].
Chen, GQ ;
Rascle, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 153 (03) :205-220
[5]  
Dafermos C. M., 2005, Hyperbolic Conservation Laws in Continuum Physics, V3, DOI 10.1007/3-540-29089-3
[6]   Structure of entropy solutions for multi-dimensional scalar conservation laws [J].
De Lellis, C ;
Otto, F ;
Westdickenberg, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (02) :137-184
[7]   LP REGULARITY OF VELOCITY AVERAGES [J].
DIPERNA, RJ ;
LIONS, PL ;
MEYER, Y .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (3-4) :271-287
[8]   CHARACTERIZING BLOWUP USING SIMILARITY VARIABLES [J].
GIGA, Y ;
KOHN, RV .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (01) :1-40
[9]  
GOLSE F, 1985, CR ACAD SCI I-MATH, V301, P341
[10]  
Kruzhkov SN, 1970, MAT SBORNIK, V81, P228