Preparation and electrochemical properties of high-voltage cathode materials, LiMyNi0.5-yMn1.5O4 (M = Fe, Cu, Al, Mg; y=0.0-0.4)

被引:168
作者
Fey, GTK [1 ]
Lu, CZ [1 ]
Kumar, TP [1 ]
机构
[1] Natl Cent Univ, Dept Chem & Mat Engn, Chungli 32054, Taiwan
关键词
multiple substitution; cathode materials; LiMn2O4; spinel cathode; lithium battery;
D O I
10.1016/S0378-7753(03)00010-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state synthesized LiNi0.5-yMyMn1.5O4 spinels, where M - Fe, Mg, Al, or Cu, and y = 0.0-0.4, have been studied as high-voltage cathode materials. Powder X-ray diffraction studies showed that all the substituents displayed a propensity for the 8a tetrahedral site at high concentrations. Cyclic voltammetric studies showed electrochemical activity around 4 V as well as above 4.4 V. While the 4-V activity was related solely to the Mn4+/Mn3+ couple, the 5-V activity was due to the redox reactions of Ni and the other transition metal ions. The cosubstituents reduced the 5-V capacity and shifted the redox potentials in the 5-V region to higher values. At high concentrations, the cosubstituents tended to occupy the 8a sites, which may lead to a blockage of lithium transport during the charge-discharge processes. LiNi0.4Fe0.1Mn1.5O4 registered the best performance with a first-cycle capacity of 117 mAh/g and 78% capacity retention over 60 cycles. Electrochemical impedance spectroscopic studies showed a decrease in the charge transfer resistance at high deintercalation levels. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:332 / 345
页数:14
相关论文
共 41 条
[1]   Materials' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries [J].
Amatucci, GG ;
Schmutz, CN ;
Blyr, A ;
Sigala, C ;
Gozdz, AS ;
Larcher, D ;
Tarascon, JM .
JOURNAL OF POWER SOURCES, 1997, 69 (1-2) :11-25
[2]   Preparation and electrochemical investigation of LiMn2-xMexO4 (Me:Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries [J].
Amine, K ;
Tukamoto, H ;
Yasuda, H ;
Fujita, Y .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :604-608
[3]   A new three-volt spinel Li1+xMn1.5Ni0.5O4 for secondary lithium batteries [J].
Amine, K ;
Tukamoto, H ;
Yasuda, H ;
Fujita, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (05) :1607-1613
[4]   Electrochemical investigations of cobalt-doped LiMn2O4 as cathode material for lithium-ion batteries [J].
Arora, P ;
Popov, BN ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (03) :807-815
[5]   Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Teller, H ;
Markovsky, B ;
Salitra, G ;
Heider, U ;
Heider, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3024-3034
[6]   LiMn2-xCuxO4 spinels (0.1≤x≤0.5):: A new class of 5 V cathode materials for Li batteries -: I.: Electrochemical, structural, and spectroscopic studies [J].
Ein-Eli, Y ;
Howard, WF ;
Lu, SH ;
Mukerjee, S ;
McBreen, J ;
Vaughey, JT ;
Thackeray, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (04) :1238-1244
[7]   LiNixCu0.5-xMn1.5O4 spinel electrodes, superior high-potential cathode materials for Li batteries -: I.: Electrochemical and structural studies [J].
Ein-Eli, Y ;
Vaughey, JT ;
Thackeray, MM ;
Mukerjee, S ;
Yang, XQ ;
McBreen, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :908-913
[8]   LiCuxIICuyIIIMn[2-(x+y])III,IVO4: 5V cathode materials [J].
EinEli, Y ;
Howard, WF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (08) :L205-L207
[9]  
FEY GTK, IN PRESS MAT CHEM PH
[10]   Correlation between the growth of the 3.3 V discharge plateau and capacity fading in Li1+xMn2-xO4 materials [J].
Gao, Y ;
Dahn, JR .
SOLID STATE IONICS, 1996, 84 (1-2) :33-40