Design and Validation of a Portable Machine Learning-Based Electronic Nose

被引:24
作者
Huang, Yixu [1 ]
Doh, Iyll-Joon [1 ]
Bae, Euiwon [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, Appl Opt Lab, W Lafayette, IN 47907 USA
关键词
metal-oxide sensor; olfactory; portable instrument; food authentication; machine-learning; electronic nose; OXIDE GAS SENSORS; DISCRIMINATION; SYSTEM;
D O I
10.3390/s21113923
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Volatile organic compounds (VOCs) are chemicals emitted by various groups, such as foods, bacteria, and plants. While there are specific pathways and biological features significantly related to such VOCs, detection of these is achieved mostly by human odor testing or high-end methods such as gas chromatography-mass spectrometry that can analyze the gaseous component. However, odor characterization can be quite helpful in the rapid classification of some samples in sufficient concentrations. Lower-cost metal-oxide gas sensors have the potential to allow the same type of detection with less training required. Here, we report a portable, battery-powered electronic nose system that utilizes multiple metal-oxide gas sensors and machine learning algorithms to detect and classify VOCs. An in-house circuit was designed with ten metal-oxide sensors and voltage dividers; an STM32 microcontroller was used for data acquisition with 12-bit analog-to-digital conversion. For classification of target samples, a supervised machine learning algorithm such as support vector machine (SVM) was applied to classify the VOCs based on the measurement results. The coefficient of variation (standard deviation divided by mean) of 8 of the 10 sensors stayed below 10%, indicating the excellent repeatability of these sensors. As a proof of concept, four different types of wine samples and three different oil samples were classified, and the training model reported 100% and 98% accuracy based on the confusion matrix analysis, respectively. When the trained model was challenged against new sets of data, sensitivity and specificity of 98.5% and 98.6% were achieved for the wine test and 96.3% and 93.3% for the oil test, respectively, when the SVM classifier was used. These results suggest that the metal-oxide sensors are suitable for usage in food authentication applications.
引用
收藏
页数:13
相关论文
共 31 条
[1]  
Amari A., 2009, SENSORS TRANSDUCERS, V102, P33, DOI DOI 10.1063/1.3156581
[2]   Optical sensor arrays for chemical sensing: the optoelectronic nose [J].
Askim, Jon R. ;
Mahmoudi, Morteza ;
Suslick, Kenneth S. .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (22) :8649-8682
[3]   Metal Oxide Sensors for Electronic Noses and Their Application to Food Analysis [J].
Berna, Amalia .
SENSORS, 2010, 10 (04) :3882-3910
[4]   Electronic nose classification and differentiation of bacterial foodborne pathogens based on support vector machine optimized with particle swarm optimization algorithm [J].
Bonah, Ernest ;
Huan, Xingyi ;
Yi, Ren ;
Aheto, Joshua H. ;
Osae, Richard ;
Golly, Moses .
JOURNAL OF FOOD PROCESS ENGINEERING, 2019, 42 (06)
[5]   Use of the Electronic Nose as a Screening Tool for the Recognition of Durum Wheat Naturally Contaminated by Deoxynivalenol: A Preliminary Approach [J].
Campagnoli, Anna ;
Cheli, Federica ;
Polidori, Carlo ;
Zaninelli, Mauro ;
Zecca, Oreste ;
Savoini, Giovanni ;
Pinotti, Luciano ;
Dell'Orto, Vittorio .
SENSORS, 2011, 11 (05) :4899-4916
[6]   Semiconductor metal oxide gas sensors: A review [J].
Dey, Ananya .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2018, 229 :206-217
[7]   Discrimination of selected fungi species based on their odour profile using prototypes of electronic nose instruments [J].
Gebicki, Jacek ;
Szulczynski, Bartosz .
MEASUREMENT, 2018, 116 :307-313
[8]   Using a metal oxide sensor (MOS)-based electronic nose for discrimination of bacteria based on individual colonies in suspension [J].
Green, Geoffrey C. ;
Chan, Adrian D. C. ;
Dan, Hanhong ;
Lin, Min .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 152 (01) :21-28
[9]   A portable electronic nose system for the identification of cannabis-based drugs [J].
Haddi, Z. ;
Amari, A. ;
Alami, H. ;
El Bari, N. ;
Llobet, E. ;
Bouchikhi, B. .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 155 (02) :456-463
[10]   Editors' Choice-Critical Review-A Critical Review of Solid State Gas Sensors [J].
Hunter, Gary W. ;
Akbar, Sheikh ;
Bhansali, Shekhar ;
Daniele, Michael ;
Erb, Patrick D. ;
Johnson, Kevin ;
Liu, Chung-Chiun ;
Miller, Derek ;
Oralkan, Omer ;
Hesketh, Peter J. ;
Manickam, Pandiaraj ;
Vander Wal, Randy L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (03)