A comparative life cycle assessment of different pyrolysis-pretreatment pathways of wood biomass for levoglucosan production

被引:24
作者
Bhar, Rajarshi [1 ]
Tiwari, Bikash R. [2 ]
Sarmah, Ajit K. [3 ]
Brar, Satinder K. [4 ]
Dubey, Brajesh K. [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Civil Engn, Kharagpur 721302, West Bengal, India
[2] Univ Quebec, Inst Natl Rech Sci, Ctr Eau Terre Environm, Quebec City, PQ G1K9A9, Canada
[3] Univ Auckland, Dept Civil & Environm Engn, Auckland 1142, New Zealand
[4] York Univ, Lassonde Sch Engn, Dept Civil Engn, Toronto, ON M3J1P3, Canada
关键词
Bio-oil; Global warming potential; Levoglucosan; Life cycle assessment; Pyrolysis; ReCiPe; Sensitivity analysis; HOT-WATER PRETREATMENT; LIGNOCELLULOSIC BIOMASS; TECHNOECONOMIC ANALYSIS; BIOETHANOL PRODUCTION; STRATEGIES; LCA;
D O I
10.1016/j.biortech.2022.127305
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
In order to identify the most environmental-friendly pretreatment for pyrolsis of wood residue to levoglucosan (LG), for the first time a comparative life cycle assessment (LCA) was carried out for hot water treatment (HWT), torrefaction, acid pretreatment (AP) and salt pretreatment (SP) pathways. Since LG production can facilitate both resource recovery (RR) and wood residue handling (WRH), two different functional units (FUs), i.e., 1 kg LG production and 1 kg wood residue handling were considered. AP was found to generate the least global warming potential of 134.60 kg CO2-eq and human carcinogenic toxicity of 0.59 kg 1,4-dichlorobenzene-eq. for RR perspective. However, for WRH perspective, HWT was found to be the best pretreatment (6.39 kg CO2-eq; 0.03
引用
收藏
页数:10
相关论文
共 38 条
[1]   Life cycle impact assessment and interpretation of municipal solid waste management scenarios based on the midpoint and endpoint approaches [J].
Yi, Sora ;
Kurisu, Kiyo H. ;
Hanaki, Keisuke .
INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2011, 16 (07) :652-668
[2]   Life cycle assessment of polyphenols extraction processes from waste biomass [J].
Barjoveanu, George ;
Patrautanu, Oana-Alexandra ;
Teodosiu, Carmen ;
Volf, Irina .
SCIENTIFIC REPORTS, 2020, 10 (01)
[3]  
Blackwell P., 2009, BIOCHAR ENV MANAGEME, DOI [10.4324/9781849770552, DOI 10.4324/9781849770552]
[4]   Comparative Life Cycle Assessment of Glucose Production from Maize Starch and Woody Biomass Residues as a Feedstock [J].
Blanco, Jorge ;
Iglesias, Jose ;
Morales, Gabriel ;
Melero, Juan A. ;
Moreno, Jovita .
APPLIED SCIENCES-BASEL, 2020, 10 (08)
[5]   Framework for consequential life cycle assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues [J].
Brassard, P. ;
Godbout, S. ;
Hamelin, L. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 138
[6]  
Brassard P., 2019, 27th European Biomass Conference (EUBCE)-Setting the course for a biobased economy, P1234
[7]   Life cycle assessment of bioethanol production from three feedstocks and two fermentation waste reutilization schemes [J].
Chang, Fang-Chih ;
Lin, Lang-Dong ;
Ko, Chun-Han ;
Hsieh, Hsin-Chuan ;
Yang, Bing-Yuan ;
Chen, Wen-Hua ;
Hwang, Wen-Song .
JOURNAL OF CLEANER PRODUCTION, 2017, 143 :973-979
[8]   Characterization of Products from Torrefaction of Sprucewood and Bagasse in an Auger Reactor [J].
Chang, Sheng ;
Zhao, Zengli ;
Zheng, Anqing ;
He, Fang ;
Huang, Zhen ;
Li, Haibin .
ENERGY & FUELS, 2012, 26 (11) :7009-7017
[9]   The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review [J].
Corominas, Lluis ;
Byrne, Diana M. ;
Guest, Jeremy S. ;
Hospido, Almudena ;
Roux, Philippe ;
Shaw, Andrew ;
Short, Michael D. .
WATER RESEARCH, 2020, 184
[10]   Value added liquid products from waste biomass pyrolysis using pretreatments [J].
Das, Oisik ;
Sarmah, Ajit K. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2015, 538 :145-151