Isogeometric analysis for a phase-field constrained optimization problem of morphological evolution of vesicles in electrical fields

被引:27
作者
Ashour, Mohammed [1 ]
Valizadeh, Navid [1 ]
Rabczuk, Timon [2 ,3 ]
机构
[1] Bauhaus Univ Weimar, Inst Struct Mech, Marienstr 15, D-99423 Weimar, Germany
[2] Ton Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
关键词
Isogeometric analysis; Phase-field; Constrained optimization; Flexoelectricity; Biomembranes; Vesicles; PARTICLE DIFFERENCE METHOD; STRONG DISCONTINUITY PROBLEMS; ELASTIC BENDING ENERGY; RED-BLOOD-CELLS; SHAPE TRANSITIONS; DOMAIN EVOLUTION; INTERFACE METHOD; FLUID MEMBRANES; MODEL; DYNAMICS;
D O I
10.1016/j.cma.2021.113669
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we solve a constrained Willmore problem coupled with an electrical field using IsoGeometric Analysis (IGA) to simulate the morphological evolution of vesicles subjected to static electrical fields. The model consist of two phases, the lipid bilayer and the electrolyte. The two-phases problem is modeled using the phase-field method, a subclass of the diffusive interface models. The bending, flexoelectric and dielectric energies of the model are reformulated using the phase-field parameter. A modified Augmented-Lagrangian approach was used to satisfy the constraints while maintaining numerical stability and a relatively large time step. This approach guarantees the satisfaction of the constraints at each time step over the entire temporal domain. The results show the superiority of the isogeometric analysis in solving high-order differential operators without the need for additional intermediate equations to account for classical mesh-based methods limited continuity. On the physical side, the morphological evolution of the vesicles can be simulated accurately using IGA, even when considering the flexoelectric response of the biomembrane, which adds another layer of numerical complexity to the system. The effect of the flexoelectricity, the conductivity ratio and other aspects of the problem are studied through several 3D numerical examples. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:27
相关论文
共 84 条
[51]   Shape transitions of fluid vesicles and red blood cells in capillary flows [J].
Noguchi, H ;
Gompper, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (40) :14159-14164
[52]   Adhesion of nanoparticles to vesicles: A Brownian dynamics simulation [J].
Noguchi, H ;
Takasu, M .
BIOPHYSICAL JOURNAL, 2002, 83 (01) :299-308
[53]   The role of gel-phase domains in electroporation of vesicles [J].
Perrier, Dayinta L. ;
Rems, Lea ;
Kreutzer, Michiel T. ;
Boukany, Pouyan E. .
SCIENTIFIC REPORTS, 2018, 8
[54]  
Piegl L.A., 1997, NURBS BOOK, V2nd, P81, DOI [10.1007/978-3-642-59223-2_3, DOI 10.1007/978-3-642-59223-2_3, 10.1007/978-3-642-59223-2]
[55]   Monte Carlo simulations of vesicles and fluid membranes transformations [J].
Piotto, S ;
Mavelli, F .
ORIGINS OF LIFE AND EVOLUTION OF THE BIOSPHERE, 2004, 34 (1-2) :225-235
[56]   A sharp interface method for an immersed viscoelastic solid [J].
Puelz, Charles ;
Griffith, Boyce E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 409
[57]   A critical comparison of smooth and sharp interface methods for phase transition [J].
Rajkotwala, A. H. ;
Panda, A. ;
Peters, E. A. J. F. ;
Baltussen, M. W. ;
van der Geld, C. W. M. ;
Kuerten, J. G. M. ;
Kuipers, J. A. M. .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2019, 120
[58]   An adaptive meshfree method for phase-field models of biomembranes. Part I: Approximation with maximum-entropy basis functions [J].
Rosolen, A. ;
Peco, C. ;
Arroyo, M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 249 :303-319
[59]   PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces [J].
Sarmiento, A. F. ;
Cortes, A. M. A. ;
Garcia, D. A. ;
Dalcin, L. ;
Collier, N. ;
Calo, V. M. .
JOURNAL OF COMPUTATIONAL SCIENCE, 2017, 18 :117-131
[60]   Domain evolution in ferroelectric materials: A continuum phase field model and finite element implementation [J].
Schrade, D. ;
Mueller, R. ;
Xu, Bx ;
Gross, D. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (41-44) :4365-4374