Persistent hysteresis in graphene-mica van der Waals heterostructures

被引:24
|
作者
Mohrmann, Jens [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [2 ]
Danneau, Romain [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[2] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki, Japan
关键词
graphene; mica; boron nitride; heterostructure; hysteresis; DIRAC FERMIONS; WATER FILMS; FIELD; THIN; INSULATOR;
D O I
10.1088/0957-4484/26/1/015202
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report the study of electronic transport in graphene-mica van der Waals heterostructures. We have designed various graphene field-effect devices in which mica is utilized as a substrate and/or gate dielectric. When mica is used as a gate dielectric we observe a very strong positive gate voltage hysteresis of the resistance, which persists in samples that were prepared in a controlled atmosphere down to even millikelvin temperatures. In a double-gated mica-graphene-hBN van der Waals heterostructure, we found that while a strong hysteresis occurred when mica was used as a substrate/gate dielectric, the same graphene sheet on mica substrate no longer showed hysteresis when the charge carrier density was tuned through a second gate with the hBN dielectric. While this hysteretic behavior could be useful for memory devices, our findings confirm that the environment during sample preparation has to be controlled strictly.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Tunneling devices based on graphene/black phosphorus van der Waals heterostructures
    Jiang, Xiao-Qiang
    Li, Xiao-Kuan
    Chen, Shao-Nan
    Su, Bao-Wang
    Huang, Kai-Xuan
    Liu, Zhi-Bo
    Tian, Jian-Guo
    MATERIALS RESEARCH EXPRESS, 2020, 7 (01)
  • [32] Plasmon excitation in MoS2/graphene van der waals heterostructures
    Liu, Dan-Dan
    Zhang, Zhi-Yin
    Guo, Peng
    Wang, Jian-Jun
    PRAMANA-JOURNAL OF PHYSICS, 2021, 96 (01):
  • [33] Tunable Schottky and Ohmic contacts in graphene and tellurene van der Waals heterostructures
    Qin, Xinming
    Hu, Wei
    Yang, Jinlong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (42) : 23611 - 23619
  • [34] Highly Tunable Carrier Tunneling in Vertical Graphene-WS2-Graphene van der Waals Heterostructures
    Bai, Zongqi
    Xiao, Yang
    Luo, Qing
    Li, Miaomiao
    Peng, Gang
    Zhu, Zhihong
    Luo, Fang
    Zhu, Mengjian
    Qin, Shiqiao
    Novoselov, Kostya
    ACS NANO, 2022, 16 (05) : 7880 - 7889
  • [35] Dielectric Constant and van der Waals Interlayer Interaction of MoS2-Graphene Heterostructures
    Singh, Amit
    Lee, Seunghan
    Lee, Hoonkyung
    Watanabe, Hiroshi
    2020 IEEE 15TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEM (IEEE NEMS 2020), 2020, : 490 - 494
  • [36] Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures
    Pierucci, Debora
    Henck, Hugo
    Avila, Jose
    Balan, Adrian
    Naylor, Carl H.
    Patriarche, Gilles
    Dappe, Yannick J.
    Silly, Mathieu G.
    Sirotti, Fausto
    Johnson, A. T. Charlie
    Asensio, Maria C.
    Ouerghi, Abdelkarim
    NANO LETTERS, 2016, 16 (07) : 4054 - 4061
  • [37] Field Effect in Graphene-Based van der Waals Heterostructures: Stacking Sequence Matters
    Stradi, Daniele
    Papior, Nick R.
    Hansen, Ole
    Brandbyge, Mads
    NANO LETTERS, 2017, 17 (04) : 2660 - 2666
  • [38] Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures
    Wang, Jingang
    Mu, Xijiao
    Sun, Mengtao
    Mu, Tingjie
    APPLIED MATERIALS TODAY, 2019, 16 : 1 - 20
  • [39] Line shape of the Raman 2D peak of graphene in van der Waals heterostructures
    Neumann, Christoph
    Banszerus, Luca
    Schmitz, Michael
    Reichardt, Sven
    Sonntag, Jens
    Taniguchi, Takashi
    Watanabe, Kenji
    Beschoten, Bernd
    Stampfer, Christoph
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (12): : 2326 - 2330
  • [40] Strain engineering of van der Waals heterostructures
    Vermeulen, Paul A.
    Mulder, Jefta
    Momand, Jamo
    Kooi, Bart J.
    NANOSCALE, 2018, 10 (03) : 1474 - 1480