AI Meets Exascale Computing: Advancing Cancer Research With Large-Scale High Performance Computing

被引:20
作者
Bhattacharya, Tanmoy [1 ]
Brettin, Thomas [2 ]
Doroshow, James H. [3 ]
Evrard, Yvonne A. [4 ]
Greenspan, Emily J. [5 ]
Gryshuk, Amy L. [6 ]
Hoang, Thuc T. [7 ]
Lauzon, Carolyn B. Vea [8 ]
Nissley, Dwight [9 ]
Penberthy, Lynne [10 ]
Stahlberg, Eric [11 ]
Stevens, Rick [2 ,12 ]
Streitz, Fred [13 ]
Tourassi, Georgia [14 ]
Xia, Fangfang [15 ]
Zaki, George [11 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM USA
[2] Argonne Natl Lab, Comp Environm & Life Sci Directorate, Lemont, IL USA
[3] NCI, Div Canc Treatment & Diag, Bethesda, MD 20892 USA
[4] Frederick Natl Lab Canc Res, Appl Dev & Res Directorate, Frederick, MD USA
[5] NCI, Ctr Biomed Informat & Informat Technol, Bethesda, MD 20892 USA
[6] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA
[7] US DOE, Natl Nucl Secur Adm, Adv Simulat & Comp, Washington, DC 20585 USA
[8] US DOE, Off Sci, Adv Sci Comp Res, Washington, DC 20585 USA
[9] Frederick Natl Lab Canc Res, NCI RAS Initiat, Canc Res Technol Program, Frederick, MD USA
[10] NCI, Div Canc Control & Populat Sci, Bethesda, MD 20892 USA
[11] Frederick Natl Lab Canc Res, Biomed Informat & Data Sci Directorate, Frederick, MD 21701 USA
[12] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[13] Lawrence Livermore Natl Lab, High Performance Comp Innovat Ctr, Livermore, CA 94550 USA
[14] Oak Ridge Natl Lab, Hlth Data Sci Inst, Oak Ridge, TN USA
[15] Argonne Natl Lab, Data Sci & Learning Div, Lemont, IL USA
来源
FRONTIERS IN ONCOLOGY | 2019年 / 9卷
基金
美国国家卫生研究院;
关键词
cancer research; high performance computing; artificial intelligence; deep learning; natural language processing; multi-scale modeling; precision medicine; uncertainty quantification; RESOURCE; DISCOVERY;
D O I
10.3389/fonc.2019.00984
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The application of data science in cancer research has been boosted by major advances in three primary areas: (1) Data: diversity, amount, and availability of biomedical data; (2) Advances in Artificial Intelligence (AI) and Machine Learning (ML) algorithms that enable learning from complex, large-scale data; and (3) Advances in computer architectures allowing unprecedented acceleration of simulation and machine learning algorithms. These advances help build in silico ML models that can provide transformative insights from data including: molecular dynamics simulations, next-generation sequencing, omics, imaging, and unstructured clinical text documents. Unique challenges persist, however, in building ML models related to cancer, including: (1) access, sharing, labeling, and integration of multimodal and multi-institutional data across different cancer types; (2) developing AI models for cancer research capable of scaling on next generation high performance computers; and (3) assessing robustness and reliability in the AI models. In this paper, we review the National Cancer Institute (NCI) -Department of Energy (DOE) collaboration, Joint Design of Advanced Computing Solutions for Cancer (JDACS4C), a multi-institution collaborative effort focused on advancing computing and data technologies to accelerate cancer research on three levels: molecular, cellular, and population. This collaboration integrates various types of generated data, pre-exascale compute resources, and advances in ML models to increase understanding of basic cancer biology, identify promising new treatment options, predict outcomes, and eventually prescribe specialized treatments for patients with cancer.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A new hybrid solver with two-level parallel computing for large-scale structural analysis
    Miao, Xinqiang
    Jin, Xianlong
    Ding, Junhong
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (14) : 3661 - 3675
  • [42] Estimating Phosphorescent Emission Energies in IrIII Complexes Using Large-Scale Quantum Computing Simulations
    Genin, Scott N.
    Ryabinkin, Ilya G.
    Paisley, Nathan R.
    Whelan, Sarah O.
    Helander, Michael G.
    Hudson, Zachary M.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (19)
  • [43] A Checkpoint of Research on Parallel I/O for High-Performance Computing
    Boito, Francieli Zanon
    Inacio, Eduardo C.
    Bez, Jean Luca
    Navaux, Philippe O. A.
    Dantas, Mario A. R.
    Denneulin, Yves
    [J]. ACM COMPUTING SURVEYS, 2018, 51 (02)
  • [44] Yabi: An online research environment for grid, high performance and cloud computing
    Hunter, Adam A.
    Macgregor, Andrew B.
    Szabo, Tamas O.
    Wellington, Crispin A.
    Bellgard, Matthew I.
    [J]. SOURCE CODE FOR BIOLOGY AND MEDICINE, 2012, 7 (01)
  • [45] Java']Java in the High Performance Computing arena: Research, practice and experience
    Taboada, Guillermo L.
    Ramos, Sabela
    Exposito, Roberto R.
    Tourino, Juan
    Doallo, Ramon
    [J]. SCIENCE OF COMPUTER PROGRAMMING, 2013, 78 (05) : 425 - 444
  • [46] DCU-CHK: checkpointing for large-scale CPU-DCU heterogeneous computing systems
    Jia, Jie
    Lin, Xinyuan
    Lin, Fang
    Liu, Yi
    [J]. CCF TRANSACTIONS ON HIGH PERFORMANCE COMPUTING, 2024, 6 (05) : 519 - 532
  • [47] Large-scale, high-resolution agricultural systems modeling using a hybrid approach combining grid computing and parallel processing
    Zhao, Gang
    Bryan, Brett A.
    King, Darran
    Luo, Zhongkui
    Wang, Enli
    Bende-Michl, Ulrike
    Song, Xiaodong
    Yu, Qiang
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 41 : 231 - 238
  • [48] Large-Memory Nodes for Energy Efficient High-Performance Computing
    Zivanovic, Darko
    Radulovic, Milan
    Llort, German
    Zaragoza, David
    Strassburg, Janko
    Carpenter, Paul M.
    Radojkovic, Petar
    Ayguade, Eduard
    [J]. MEMSYS 2016: PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON MEMORY SYSTEMS, 2016, : 3 - 9
  • [49] Large language model evaluation for high-performance computing software development
    Godoy, William F.
    Valero-Lara, Pedro
    Teranishi, Keita
    Balaprakash, Prasanna
    Vetter, Jeffrey S.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (26)
  • [50] High-performance computing for static security assessment of large power systems
    Kagita, Venkateswara Rao
    Panda, Sanjaya Kumar
    Krishan, Ram
    Reddy, P. Deepak
    Aswanth, Jabba
    [J]. CONNECTION SCIENCE, 2023, 35 (01)