Nanoparticle iron-phosphate anode material for Li-ion battery

被引:84
|
作者
Son, D [1 ]
Kim, E
Kim, TG
Kim, MG
Cho, JH
Park, B
机构
[1] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul, South Korea
[2] Seoul Natl Univ, Res Ctr Energy Convers & Storage, Seoul, South Korea
[3] Kumoh Natl Inst Technol, Dept Appl Chem, Gumi, South Korea
[4] Pohang Univ Sci & Technol, Beamline Res Div, Pohang Accelerator Lab, Pohang, South Korea
关键词
D O I
10.1063/1.1835995
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nanoparticle crystalline iron phosphates (FePO4.2H(2)O and FePO4) were synthesized using a (CTAB) surfactant as an anode material for Li rechargeable batteries. The electrochemical properties of the nanoparticle iron phosphates were characterized with a voltage window of 2.4-0 V. A variscite orthorhombic FePO4.2H(2)O showed a large initial charge capacity of 609 mAh/g. On the other hand, a tridymite triclinic FePO4 exhibited excellent cyclability: the capacity retention up to 30 cycles was similar to80%, from 485 to 375 mAh/g. The iron phosphate anodes exhibited the highest reported capacity, while the cathode LiFePO4 has an ideal capacity of 170 mAh/g. (C) 2004 American Institute of Physics.
引用
收藏
页码:5875 / 5877
页数:3
相关论文
共 50 条
  • [1] Orthorhombic Lithium Titanium Phosphate as an Anode Material for Li-ion Rechargeable Battery
    Kee, Yongho
    Dimov, Nikolay
    Minami, Keita
    Okada, Shigeto
    ELECTROCHIMICA ACTA, 2015, 174 : 516 - 520
  • [2] Anode material of CoMnSb for rechargeable Li-ion battery
    Matsuno, Shinsuke
    Nakayama, Masanobu
    Wakihara, Masataka
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) : A61 - A65
  • [3] Synthesis of Titania for Anode Material of Li-Ion Battery
    Purwanto, Agus
    Dyartanti, Endah
    Inayati
    Sutopo, Wahyudi
    Nizam, Muhammad
    PROCEEDINGS OF THE 2013 JOINT INTERNATIONAL CONFERENCE ON RURAL INFORMATION & COMMUNICATION TECHNOLOGY AND ELECTRIC-VEHICLE TECHNOLOGY (RICT & ICEV-T), 2013,
  • [4] Performances of homemade graphite as anode material for Li-ion battery
    Kan, Su-Rong
    Wu, Guo-Liang
    Lu, Shi-Gang
    Liu, Ren-Min
    Dianyuan Jishu/Chinese Journal of Power Sources, 2002, 26 (02):
  • [5] Anode material NbO for Li-ion battery and its electrochemical properties
    Jian Li
    Wen-Wen Liu
    Hong-Ming Zhou
    Zhong-Zhong Liu
    Bao-Rong Chen
    Wen-Jiao Sun
    Rare Metals, 2018, 37 : 118 - 122
  • [6] Interface phenomena between Li anode and lithium phosphate electrolyte for Li-ion battery
    Santosh, K. C.
    Xiong, Ka
    Longo, Roberto C.
    Cho, Kyeongjae
    JOURNAL OF POWER SOURCES, 2013, 244 : 136 - 142
  • [7] Anode material NbO for Li-ion battery and its electrochemical properties
    Jian Li
    Wen-Wen Liu
    Hong-Ming Zhou
    Zhong-Zhong Liu
    Bao-Rong Chen
    Wen-Jiao Sun
    Rare Metals, 2018, 37 (02) : 118 - 122
  • [8] Nanostructured Anode Material for Li-Ion Battery Obtained by Galvanic Process
    Cocchiara, Cristina
    Inguanta, Rosalinda
    Piazza, Salvatore
    Sunseri, Carmelo
    INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY BASED INNOVATIVE APPLICATIONS FOR THE ENVIRONMENT, 2016, 47 : 73 - 78
  • [9] Anode material NbO for Li-ion battery and its electrochemical properties
    Li, Jian
    Liu, Wen-Wen
    Zhou, Hong-Ming
    Liu, Zhong-Zhong
    Chen, Bao-Rong
    Sun, Wen-Jiao
    RARE METALS, 2018, 37 (02) : 118 - 122
  • [10] Open-framework iron(II) phosphate-oxalate as anode material for Li-ion batteries
    Lu, Si-Tong
    Li, Yan-Yan
    Cai, Ya-Xuan
    Zou, Guo-Dong
    Fan, Yang
    IONICS, 2023, 29 (11) : 4585 - 4592