Digital logic circuits in yeast with CRISPR-dCas9 NOR gates

被引:155
作者
Gander, Miles W. [1 ]
Vrana, Justin D. [2 ]
Voje, William E. [3 ]
Carothers, James M. [3 ,4 ]
Klavins, Eric [1 ,4 ]
机构
[1] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA
[3] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
[4] Univ Washington, Ctr Synthet Biol, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
SEQUENCE-SPECIFIC CONTROL; SACCHAROMYCES-CEREVISIAE; REGULATORY LOGIC; GENE-REGULATION; RNA; TRANSCRIPTION; CHROMATIN; PROMOTER; NETWORKS; RETROACTIVITY;
D O I
10.1038/ncomms15459
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Natural genetic circuits enable cells to make sophisticated digital decisions. Building equally complex synthetic circuits in eukaryotes remains difficult, however, because commonly used components leak transcriptionally, do not arbitrarily interconnect or do not have digital responses. Here, we designed dCas9-Mxi1-based NOR gates in Saccharomyces cerevisiae that allow arbitrary connectivity and large genetic circuits. Because we used the chromatin remodeller Mxi1, our gates showed minimal leak and digital responses. We built a combinatorial library of NOR gates that directly convert guide RNA (gRNA) inputs into gRNA outputs, enabling the gates to be 'wired' together. We constructed logic circuits with up to seven gRNAs, including repression cascades with up to seven layers. Modelling predicted the NOR gates have effectively zero transcriptional leak explaining the limited signal degradation in the circuits. Our approach enabled the largest, eukaryotic gene circuits to date and will form the basis for large, synthetic, cellular decision-making systems.
引用
收藏
页数:11
相关论文
共 72 条
[61]   Genomic mining of prokaryotic repressors for orthogonal logic gates [J].
Stanton, Brynne C. ;
Nielsen, Alec A. K. ;
Tamsir, Alvin ;
Clancy, Kevin ;
Peterson, Todd ;
Voigt, Christopher A. .
NATURE CHEMICAL BIOLOGY, 2014, 10 (02) :99-105
[62]   Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces [J].
Storn, R ;
Price, K .
JOURNAL OF GLOBAL OPTIMIZATION, 1997, 11 (04) :341-359
[63]   Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae [J].
Sun, Jie ;
Shao, Zengyi ;
Zhao, Hua ;
Nair, Nikhil ;
Wen, Fei ;
Xu, Jian-He ;
Zhao, Huimin .
BIOTECHNOLOGY AND BIOENGINEERING, 2012, 109 (08) :2082-2092
[64]   Robust multicellular computing using genetically encoded NOR gates and chemical 'wires' [J].
Tamsir, Alvin ;
Tabor, Jeffrey J. ;
Voigt, Christopher A. .
NATURE, 2011, 469 (7329) :212-215
[65]  
Trifonov EN, 2011, PHYS LIFE REV, V8, P39, DOI 10.1016/j.plrev.2011.01.004
[66]   Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA [J].
Warren, Luigi ;
Manos, Philip D. ;
Ahfeldt, Tim ;
Loh, Yuin-Han ;
Li, Hu ;
Lau, Frank ;
Ebina, Wataru ;
Mandal, Pankaj K. ;
Smith, Zachary D. ;
Meissner, Alexander ;
Daley, George Q. ;
Brack, Andrew S. ;
Collins, James J. ;
Cowan, Chad ;
Schlaeger, Thorsten M. ;
Rossi, Derrick J. .
CELL STEM CELL, 2010, 7 (05) :618-630
[67]   Logic models of pathway biology [J].
Watterson, Steven ;
Marshall, Stephen ;
Ghazal, Peter .
DRUG DISCOVERY TODAY, 2008, 13 (9-10) :447-456
[68]  
Werner S, 2012, BIOENGINEERED, V3, P38, DOI [10.4161/bbug.3.1.18223, 10.1371/journal.pone.0016765]
[69]   Multi-Input RNAi-Based Logic Circuit for Identification of Specific Cancer Cells [J].
Xie, Zhen ;
Wroblewska, Liliana ;
Prochazka, Laura ;
Weiss, Ron ;
Benenson, Yaakov .
SCIENCE, 2011, 333 (6047) :1307-1311
[70]   Synthetic mammalian gene circuits for biomedical applications [J].
Ye, Haifeng ;
Aubel, Dominique ;
Fussenegger, Martin .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2013, 17 (06) :910-917