On the number of critical points of the second eigenfunction of the Laplacian in convex planar domains

被引:1
作者
De Regibus, Fabio [1 ]
Grossi, Massimo [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, P le A Moro 2, I-00185 Rome, Italy
关键词
Eigenfunctions; Critical points; Topological degree; Convex domain; NODAL LINE; MEMBRANE PROBLEM; ASYMPTOTICS;
D O I
10.1016/j.jfa.2022.109496
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the second eigenfunction of the Laplacian with Dirichlet boundary conditions in convex domains. If the domain has large eccentricity then the eigenfunction has exactly two nondegenerate critical points (of course they are one maximum and one minimum). The proof uses some estimates proved by Jerison ([13]) and GrieserJerison ([10]) jointly with a topological degree argument. Analogous results for higher order eigenfunctions are proved in rectangular-like domains considered in [11].(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 20 条