Iterative solutions for zeros of accretive operators

被引:51
作者
Benavides, TD [1 ]
López-Acedo, G
Xu, HK
机构
[1] Univ KwaZulu Natal, Dept Math, Private Bag X54001, ZA-4000 Durban, South Africa
[2] Univ Seville, Dept Anal, E-41080 Seville, Spain
关键词
iterative scheme; m-accretive operator; superlinear convergence;
D O I
10.1002/mana.200310003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two iterative schemes are designed to approach zeros of m-accretive operators in Banach spaces. The first one is a kind of contractive iteration process involving with the resolvent and the second one is an averaged iteration process of the identity and the resolvent. Strong convergence for the first scheme and weak convergence for the second scheme are proved. The second scheme is also shown to have superlinear rate of convergence.
引用
收藏
页码:62 / 71
页数:10
相关论文
共 16 条
[1]  
Barbu V., 1976, Nonlinear Semigroups and Differential Equations in Banach Spaces
[3]   CONVERGENCE THEOREMS FOR SEQUENCES OF NONLINEAR OPERATORS IN BANACH SPACES [J].
BROWDER, FE .
MATHEMATISCHE ZEITSCHRIFT, 1967, 100 (03) :201-&
[4]  
Cioranescu I., 1990, GEOMETRY BANACH SPAC
[5]  
Goebel K., 1984, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings
[6]  
GULER O, 1991, SIAM J CONTROL OPTIM, V29, P403, DOI 10.1137/0329022
[7]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[8]   Approximating solutions of maximal monotone operators in Hilbert spaces [J].
Kamimura, S ;
Takahashi, W .
JOURNAL OF APPROXIMATION THEORY, 2000, 106 (02) :226-240
[9]  
LIONS PL, 1977, CR ACAD SCI A MATH, V284, P1357
[10]   MEAN VALUE METHODS IN ITERATION [J].
MANN, WR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (03) :506-510