Identification of physical parameters of a flexible structure from noisy measurement data

被引:12
作者
Ohsumi, A [1 ]
Nakano, N [1 ]
机构
[1] Kyoto Inst Technol, Grad Sch Sci & Technol, Dept Mech & Syst Engn, Kyoto 606, Japan
关键词
flexible structure; inverse problem; Kalman filter; nondestructive test; parameter identification; random data; soft sensor;
D O I
10.1109/TIM.2002.806023
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We focus our attention to an inverse problem for identifying physical parameters such as Young's modulus and air and structural damping coefficients in the mathematical model of candlevered beams subject to random disturbance, using dynamic noisy data measured on its vibration taken in a nondestructive manner. First, we describe mathematical models of the cantilevered beam by an Euler-Bernoulli type partial differential equation including parameters to be identified and the measurement equation, taking vibration data including the observation noise. Second, the identification problem using random dynamic data is divided into an estimation problem obtaining the (modal) state estimate and a least-squares problem determining unknown parameters, and then the unknown parameters are determined recursively by using the couple of algorithms alternately. Finally, in order to verify the efficacy of the proposed identification algorithm, simulation studies and experiments are shown.
引用
收藏
页码:923 / 929
页数:7
相关论文
共 12 条
  • [1] Banks H. T., 1989, ESTIMATION TECHNIQUE
  • [2] BANKS HT, 1988, CONTR-THEOR ADV TECH, V4, P73
  • [3] INMAN DJ, 1989, P 5 IFAC S CONTR DIS, P353
  • [4] Jazwinski A.H., 2007, STOCHASTIC PROCESSES
  • [5] Nakano N, 2000, CH CRC RES NOTES MAT, V419, P97
  • [6] NAKANO N, 1999, P 15 WORLD C INT MEA, V5, P131
  • [7] ACTIVE CONTROL OF FLEXIBLE STRUCTURES SUBJECT TO DISTRIBUTED AND SEISMIC DISTURBANCES
    OHSUMI, A
    SAWADA, Y
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1993, 115 (04): : 649 - 657
  • [8] Ohsumi A, 1996, IEEE DECIS CONTR P, P4204, DOI 10.1109/CDC.1996.577446
  • [9] SHINTANI A, 1997, P 11 IFAC S SYST ID, V1, P369
  • [10] SMITH RC, 1993, INVERSE PROBL, V10, P261