Improved knockdown from artificial microRNAs in an enhanced miR-155 backbone: a designer's guide to potent multi-target RNAi

被引:26
作者
Fowler, Daniel K. [1 ,2 ]
Williams, Carly [2 ]
Gerritsen, Alida T. [3 ]
Washbourne, Philip [2 ]
机构
[1] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA
[2] Univ Oregon, Inst Neurosci, Eugene, OR 97403 USA
[3] Univ Idaho, Inst Bioinformat & Evolutionary Studies, Moscow, ID 83844 USA
基金
美国国家卫生研究院;
关键词
SHORT-HAIRPIN RNA; GENE KNOCKDOWN; MAMMALIAN-CELLS; IN-VIVO; DISTINCT MECHANISMS; SECONDARY STRUCTURE; EXPRESSION VECTORS; COMBINATORIAL RNAI; FUNCTIONAL SIRNAS; STRAND SELECTION;
D O I
10.1093/nar/gkv1246
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Artificial microRNA (amiRNA) sequences embedded in natural microRNA (miRNA) backbones have proven to be useful tools for RNA interference (RNAi). amiRNAs have reduced off-target and toxic effects compared to other RNAi-based methods such as short-hairpin RNAs (shRNA). amiRNAs are often less effective for knockdown, however, compared to their shRNA counterparts. We screened a large empirically-designed amiRNA set in the synthetic inhibitory BIC/miR-155 RNA (SIBR) scaffold and show common structural and sequence-specific features associated with effective amiRNAs. We then introduced exogenous motifs into the basal stem region which increase amiRNA biogenesis and knockdown potency. We call this modified backbone the enhanced SIBR (eSIBR) scaffold. Using chained amiRNAs for multi-gene knockdown, we show that concatenation of miRNAs targeting different genes is itself sufficient for increased knockdown efficacy. Further, we show that eSIBR outperforms wild-type SIBR (wtSIBR) when amiRNAs are chained. Finally, we use a lentiviral expression system in cultured neurons, where we again find that eSIBR amiRNAs are more potent for multi-target knockdown of endogenous genes. eSIBR will be a valuable tool for RNAi approaches, especially for studies where knockdown of multiple targets is desired.
引用
收藏
页数:16
相关论文
共 82 条
[1]   Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs [J].
Aagaard L.A. ;
Zhang J. ;
von Eije K.J. ;
Li H. ;
Sætrom P. ;
Amarzguioui M. ;
Rossi J.J. .
Gene Therapy, 2008, 15 (23) :1536-1549
[2]   RNAi therapeutics: Principles, prospects and challenges [J].
Aagaard, Lars ;
Rossi, John J. .
ADVANCED DRUG DELIVERY REVIEWS, 2007, 59 (2-3) :75-86
[3]   Retraction of synapses and dendritic spines induced by off-target effects of RNA interference [J].
Alvarez, Veronica A. ;
Ridenour, Dennis A. ;
Sabatini, Bernardo L. .
JOURNAL OF NEUROSCIENCE, 2006, 26 (30) :7820-7825
[4]   Algorithm for selection of functional siRNA sequences [J].
Amarzguioui, M ;
Prydz, H .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 316 (04) :1050-1058
[5]   Regulated and Multiple miRNA and siRNA Delivery Into Primary Cells by a Lentiviral Platform [J].
Amendola, Mario ;
Passerini, Laura ;
Pucci, Ferdinando ;
Gentner, Bernhard ;
Bacchetta, Rosa ;
Naldini, Luigi .
MOLECULAR THERAPY, 2009, 17 (06) :1039-1052
[6]   Beyond Secondary Structure: Primary-Sequence Determinants License Pri-miRNA Hairpins for Processing [J].
Auyeung, Vincent C. ;
Ulitsky, Igor ;
McGeary, Sean E. ;
Bartel, David P. .
CELL, 2013, 152 (04) :844-858
[7]  
Barbaric Ivana, 2007, Briefings in Functional Genomics & Proteomics, V6, P91, DOI 10.1093/bfgp/elm008
[8]   Neuroligin I: a cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis [J].
Barrow, Stephanie L. ;
Constable, John R. L. ;
Clark, Eliana ;
El-Sabeawy, Faten ;
McAllister, A. Kimberley ;
Washbourne, Philip .
NEURAL DEVELOPMENT, 2009, 4
[9]   Prevention of interferon-stimulated gene expression using microRNA-designed hairpins [J].
Bauer, M. ;
Kinkl, N. ;
Meixner, A. ;
Kremmer, E. ;
Riemenschneider, M. ;
Foerstl, H. ;
Gasser, T. ;
Ueffing, M. .
GENE THERAPY, 2009, 16 (01) :142-147
[10]  
Betancur Juan G., 2012, Frontiers in Genetics, V3, P127, DOI 10.3389/fgene.2012.00127