Deep Learning Based Channel Prediction at 2-26 GHz Band using Long Short-Term Memory Network

被引:0
|
作者
Sasaki, Motoharu [1 ]
Kuno, Nobuaki [1 ]
Nakahira, Toshiro [1 ]
Inomata, Minoru [1 ]
Yamada, Wataru [1 ]
Moriyama, Takatsune [1 ]
机构
[1] NTT Corp, Access Network Serv Syst Labs, Yokosuka, Kanagawa, Japan
来源
2021 15TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP) | 2021年
关键词
deep learning; LSTM; path loss prediction; Sub6; millimeter wave; measurements;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report a method of predicting variations in path loss using long short-term memory (LSTM) as deep learning. The training data and validation data are path loss data measured in Kanagawa, Japan, and the measurement frequencies are in the 2.2 GHz, 4.7 GHz, and 26.4 GHz frequency bands. The median data of the path loss after 1 second was predicted using 100 points of fast fading data obtained about every 0.1 seconds. The median data was derived using fast fading data of 100 points (about 10 seconds). Utilizing the prediction method using LSTM, the root-mean-square error (RMSE) for the validation data was about 2.2 dB at 2.2 GHz, about 2.1 dB at 4.7 GHz, and about 2.4 dB at 26.4 GHz. The prediction errors were improved by 1 dB or more than predictions using the latest observed values.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Traffic Prediction Based on Random Connectivity in Deep Learning with Long Short-Term Memory
    Hua, Yuxiu
    Zhao, Zhifeng
    Liu, Zhiming
    Chen, Xianfu
    Li, Rongpeng
    Zhang, Honggang
    2018 IEEE 88TH VEHICULAR TECHNOLOGY CONFERENCE (VTC-FALL), 2018,
  • [2] Automatic image generation based on deep learning long short-term memory network
    Yao, Xu
    Cao, Weiran
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2025, 25 (01) : 17 - 27
  • [3] A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals
    Tsiouris, Kostas M.
    Pezoulas, Vasileios C.
    Zervakis, Michalis
    Konitsiotis, Spiros
    Koutsouris, Dimitrios D.
    Fotiadis, Dimitrios, I
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 99 : 24 - 37
  • [4] Short-Term Traffic Prediction Using Deep Learning Long Short-Term Memory: Taxonomy, Applications, Challenges, and Future Trends
    Khan, Anwar
    Fouda, Mostafa M.
    Do, Dinh-Thuan
    Almaleh, Abdulaziz
    Rahman, Atiq Ur
    IEEE ACCESS, 2023, 11 : 94371 - 94391
  • [5] Prediction of solar cycle 25 using deep learning based long short-term memory forecasting technique
    Prasad, Amrita
    Roy, Soumya
    Sarkar, Arindam
    Panja, Subhash Chandra
    Patra, Sankar Narayan
    ADVANCES IN SPACE RESEARCH, 2022, 69 (01) : 798 - 813
  • [6] Short-Term Prediction of Wind Power Based on Deep Long Short-Term Memory
    Qu Xiaoyun
    Kang Xiaoning
    Zhang Chao
    Jiang Shuai
    Ma Xiuda
    2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 1148 - 1152
  • [7] Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)
    Skrobek, Dorian
    Krzywanski, Jaroslaw
    Sosnowski, Marcin
    Kulakowska, Anna
    Zylka, Anna
    Grabowska, Karolina
    Ciesielska, Katarzyna
    Nowak, Wojciech
    ENERGIES, 2020, 13 (24)
  • [8] Prediction on the Urban GNSS Measurement Uncertainty Based on Deep Learning Networks With Long Short-Term Memory
    Zhang, Guohao
    Xu, Penghui
    Xu, Haosheng
    Hsu, Li-Ta
    IEEE SENSORS JOURNAL, 2021, 21 (18) : 20563 - 20577
  • [9] Spectrum Prediction Based on Taguchi Method in Deep Learning With Long Short-Term Memory
    Yu, Ling
    Chen, Jin
    Ding, Guoru
    Tu, Ya
    Yang, Jian
    Sun, Jiachen
    IEEE ACCESS, 2018, 6 : 45923 - 45933
  • [10] Prompt gamma emission prediction using a long short-term memory network
    Xiao, Fan
    Radonic, Domagoj
    Kriechbaum, Michael
    Wahl, Niklas
    Neishabouri, Ahmad
    Delopoulos, Nikolaos
    Parodi, Katia
    Corradini, Stefanie
    Belka, Claus
    Kurz, Christopher
    Landry, Guillaume
    Dedes, George
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (23)