An R-Derived FlowSOM Process to Analyze Unsupervised Clustering of Normal and Malignant Human Bone Marrow Classical Flow Cytometry Data

被引:25
作者
Lacombe, Francis [1 ]
Lechevalier, Nicolas [1 ]
Vial, Jean Philippe [1 ]
Bene, Marie C. [2 ]
机构
[1] Bordeaux Univ Hosp, Flow Cytometry Dept, Hematol Lab, Pessac, France
[2] Nantes Univ Hosp, CRCINA, Hematol Biol, Nantes, France
关键词
flow cytometry; machine learning; bone marrow; MRD; FlowSOM; MASS CYTOMETRY; CELLS; VISUALIZATION; SUBSETS; MRD; AML;
D O I
10.1002/cyto.a.23897
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Multiparameter flow cytometry (MFC) is a powerful and versatile tool to accurately analyze cell subsets, notably to explore normal and pathological hematopoiesis. Yet, mostly supervised subjective strategies are used to identify cell subsets in this complex tissue. In the past few years, the implementation of mass cytometry and the big data generated have led to a blossoming of new software solutions. Their application to classical MFC in hematology is however still seldom reported. Here, we show how one of these new tools, the FlowSOM R solution, can be applied, together with the Kaluza (R) software, to a new delineation of hematopoietic subsets in normal human bone marrow (BM). We thus combined the unsupervised discrimination of cell subsets provided by FlowSOM and their expert-driven node-by-node assignment to known or new hematopoietic subsets. We also show how this new tool could modify the MFC exploration of hematological malignancies both at diagnosis (Dg) and follow-up (FU). This can be achieved by direct comparison of merged listmodes of reference normal BM, Dg, and FU samples of a representative acute myeloblastic case tested with the same immunophenotyping panel. This provides an immediate unsupervised evaluation of minimal residual disease. (c) 2019 International Society for Advancement of Cytometry
引用
收藏
页码:1191 / 1197
页数:7
相关论文
共 31 条
[1]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[2]   Four- and Five-Color Flow Cytometry Analysis of Leukocyte Differentiation Pathways in Normal Bone Marrow: A Reference Document Based on a Systematic Approach by the GTLLF and GEIL [J].
Arnoulet, Christine ;
Bene, Marie C. ;
Durrieu, Francoise ;
Feuillard, Jean ;
Fossat, Chantal ;
Husson, Bernard ;
Jouault, Helene ;
Maynadie, Marc ;
Lacombe, Francis .
CYTOMETRY PART B-CLINICAL CYTOMETRY, 2010, 78B (01) :3-10
[3]   Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10 [J].
Bene, M. C. ;
Nebe, T. ;
Bettelheim, P. ;
Buldini, B. ;
Bumbea, H. ;
Kern, W. ;
Lacombe, F. ;
Lemez, P. ;
Marinov, I. ;
Matutes, E. ;
Maynadie, M. ;
Oelschlagel, U. ;
Orfao, A. ;
Schabath, R. ;
Solenthaler, M. ;
Tschurtschenthaler, G. ;
Vladareanu, A. M. ;
Zini, G. ;
Faure, G. C. ;
Porwit, A. .
LEUKEMIA, 2011, 25 (04) :567-574
[4]   Panel proposal for the immunophenotypic diagnosis of hematological malignancies. A collaborative consensus from the groupe d'Etude Immunologique des Leucemies (GEIL) [J].
Bene, Marie C. .
CYTOMETRY PART B-CLINICAL CYTOMETRY, 2018, 94 (03) :542-547
[5]   Single-cell mass cytometry for analysis of immune system functional states [J].
Bjornson, Zach B. ;
Nolan, Garry P. ;
Fantl, Wendy J. .
CURRENT OPINION IN IMMUNOLOGY, 2013, 25 (04) :484-494
[6]   Comprehensive Cell Surface Protein Profiling Identifies Specific Markers of Human Naive and Primed Pluripotent States [J].
Collier, Amanda J. ;
Panula, Sarita P. ;
Schell, John Paul ;
Chovanec, Peter ;
Reyes, Alvaro Plaza ;
Petropoulos, Sophie ;
Corcoran, Anne E. ;
Walker, Rachael ;
Douagi, Iyadh ;
Lanner, Fredrik ;
Rugg-Gunn, Peter J. .
CELL STEM CELL, 2017, 20 (06) :874-+
[7]   Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data [J].
Diggins, Kirsten E. ;
Ferrell, P. Brent, Jr. ;
Irish, Jonathan M. .
METHODS, 2015, 82 :55-63
[8]   Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species [J].
Guilliams, Martin ;
Dutertre, Charles-Antoine ;
Scott, Charlotte L. ;
McGovern, Naomi ;
Sichien, Dorine ;
Chakarov, Svetoslav ;
Van Gassen, Sofie ;
Chen, Jinmiao ;
Poidinger, Michael ;
De Prijck, Sofie ;
Tavernier, Simon J. ;
Low, Ivy ;
Irac, Sergio Erdal ;
Mattar, Citra Nurfarah ;
Sumatoh, Hermi Rizal ;
Low, Gillian Hui Ling ;
Chung, Tam John Kit ;
Chan, Dedrick Kok Hong ;
Tan, Ker Kan ;
Hon, Tony Lim Kiat ;
Fossum, Even ;
Bogen, Bjame ;
Choolani, Mahesh ;
Chan, Jerry Kok Yen ;
Larbi, Anis ;
Luche, Herve ;
Henri, Sandrine ;
Saeys, Yvan ;
Newell, Evan William ;
Lambrecht, Bart N. ;
Malissen, Bernard ;
Ginhoux, Florent .
IMMUNITY, 2016, 45 (03) :669-684
[9]   Quality Assessment Program for EuroFlow Protocols: Summary Results of Four-Year (2010-2013) Quality Assurance Rounds [J].
Kalina, Tomas ;
Flores-Montero, Juan ;
Lecrevisse, Quentin ;
Pedreira, Carlos E. ;
van der Velden, Vincent H. J. ;
Novakova, Michaela ;
Mejstrikova, Ester ;
Hrusak, Ondrej ;
Boettcher, Sebastian ;
Karsch, Dennis ;
Sedek, Lukasz ;
Trinquand, Amelie ;
Boeckx, Nancy ;
Caetano, Joana ;
Asnafi, Vahid ;
Lucio, Paulo ;
Lima, Margarida ;
Helena Santos, Ana ;
Bonaccorso, Paola ;
van der Sluijs-Gelling, Alita J. ;
Langerak, Anton W. ;
Martin-Ayuso, Marta ;
Szczepanski, Tomasz ;
van Dongen, Jacques J. M. ;
Orfao, Alberto .
CYTOMETRY PART A, 2015, 87A (02) :145-156
[10]   The role of multiparameter flow cytometry for disease monitoring in AML [J].
Kern, Wolfgang ;
Bacher, Ulrike ;
Haferlach, Claudia ;
Schnittger, Susanne ;
Haferlach, Torsten .
BEST PRACTICE & RESEARCH CLINICAL HAEMATOLOGY, 2010, 23 (03) :379-390