Central elements and Cantor-Bernstein's theorem for pseudo-effect algebras

被引:41
作者
Dvurecenskij, A [1 ]
机构
[1] Slovak Acad Sci, Math Inst, SK-81473 Bratislava, Slovakia
关键词
pseudo-effect algebra; effect algebra; central element; general comparability; pseudo MV-algebra; monotone sigma-completeness; Cantor-Bernstein theorem;
D O I
10.1017/S1446788700003177
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Pseudo-effect algebras are partial algebras (E; +, 0, 1) with a partially defined addition + which is not necessary commutative and with two complements, left and right ones. We define central elements of a pseudo-effect algebra and the centre, which in the case of MV-algebras coincides with the set of Boolean elements and in the case of effect algebras with the Riesz decomposition property central elements are only characteristic elements. If E satisfies general comparability, then E is a pseudo MV-algebra. Finally, we apply central elements to obtain a variation of the Cantor-Bernstein theorem for pseudo-effect algebras.
引用
收藏
页码:121 / 143
页数:23
相关论文
共 21 条
[1]  
[Anonymous], FDN PHYS
[2]  
[Anonymous], 1986, MATH SURVEYS MONOGR
[3]  
BAUDOT R, 2000, S LICS SANT BARB, P3
[4]  
BELLUCE LP, 1995, THEO DEC L, V32, P7
[5]  
Chang C. C., 1958, T AM MATH SOC, V88, P467
[6]  
De Simone A, 2001, COMMENT MATH U CAROL, V42, P23
[7]  
DESIMONE A, IN PRESS CZECHOSLOVA
[8]  
DINOLA A, IN PRESS MULT VALUED
[9]   Pseudo MV-algebras are intervals in l-groups [J].
Dvurecenskij, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 :427-445
[10]   Pseudoeffect algebras. II. Group representations [J].
Dvurecenskij, A ;
Vetterlein, T .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (03) :703-726