Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study

被引:10
作者
Piel, Felix [1 ,2 ]
Mueller, Markus [1 ]
Mikoviny, Tomas [3 ]
Pusede, Sally E. [4 ]
Wisthaler, Armin [2 ,3 ]
机构
[1] Ionicon Analyt GmbH, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria
[3] Univ Oslo, Dept Chem, N-0315 Oslo, Norway
[4] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA
关键词
EMISSION FACTORS; CHEMICAL-CHARACTERIZATION; FIREPLACE COMBUSTION; TOF-MS; AEROSOL; IDENTIFICATION; SECONDARY; INLET; QUANTIFICATION; DISTRIBUTIONS;
D O I
10.5194/amt-12-5947-2019
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Herein we report on the first successful airborne deployment of the CHemical Analysis of AeRosol ONline (CHARON) particle inlet which allowed us to measure the chemical composition of atmospheric submicrometer particles in real time using a state-of-the-art proton-transferreaction time-of-flight mass spectrometry (PTR-ToF-MS) analyzer. The data were collected aboard the NASA DC-8 Airborne Science Laboratory on 26 June 2018 over California in the frame of NASA's Student Airborne Research Program (SARP). We show exemplary data collected when the airplane (i) shortly encountered a fresh (< 1 h old) smoke plume that had emanated from the Lions Fire in the Sierra Nevada, (ii) intercepted a particle plume emitted from an amine gas treating unit of a petroleum refinery close to Bakersfield, (iii) carried out a spatial survey in the boundary layer over the San Joaquin Valley and (iv) performed a vertical profile measurement over the greater Bakersfield area. The most important finding from this pilot study is that the CHARON PTR-ToF-MS system measures fast enough to be deployed on a jet research aircraft. The data collected during 3 to 15 s long plume encounters demonstrate the feasibility of airborne point or small area emission measurements. Further improvements are, however, warranted to eliminate or reduce the observed signal tailing (1/e decay time between 6 and 20 s). The fast time response of the analyzer allowed us to generate highly spatially resolved maps (1-2 km in the horizontal, 100m in the vertical) of atmospheric particle chemical constituents. The chemical information that was extracted from the recorded particle mass spectra includes (i) mass concentrations of ammonium, nitrate and total organics; (ii) mass concentrations of different classes of organic compounds (CH vs. CHO vs. CHN vs. CHNO compounds; monoaromatic vs. polyaromatic compounds); (iii) aerosol bulk average <(O : C)over bar> and (H : C) over bar ratios; (iv) mass concentrations of selected marker molecules (e.g., levoglucosan in particles emitted from a wildfire, an alkanolamine in particles emitted from a petroleum refinery) and (v) wildfire emission ratios (Delta total organics/Delta CO = 0.054; Delta levoglucosan/Delta CO = 7.9 x 10(-3); Delta vanillic acid/Delta CO = 4.4 x 10(-4) and Delta retene/Delta CO = 1.9 x 10(-4); all calculated as peak area ratios, in grams per gram). The capability of the CHARON PTR-ToF-MS instrument to chemically characterize submicrometer atmospheric particles in a quantitative manner, at the near-molecular level, and in real time brings a new and unprecedented measurement capability to the airborne atmospheric science community.
引用
收藏
页码:5947 / 5958
页数:12
相关论文
共 40 条
  • [1] O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry
    Aiken, Allison C.
    Decarlo, Peter F.
    Kroll, Jesse H.
    Worsnop, Douglas R.
    Huffman, J. Alex
    Docherty, Kenneth S.
    Ulbrich, Ingrid M.
    Mohr, Claudia
    Kimmel, Joel R.
    Sueper, Donna
    Sun, Yele
    Zhang, Qi
    Trimborn, Achim
    Northway, Megan
    Ziemann, Paul J.
    Canagaratna, Manjula R.
    Onasch, Timothy B.
    Alfarra, M. Rami
    Prevot, Andre S. H.
    Dommen, Josef
    Duplissy, Jonathan
    Metzger, Axel
    Baltensperger, Urs
    Jimenez, Jose L.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (12) : 4478 - 4485
  • [2] Design and operation of a pressure-controlled inlet for airborne sampling with an aerodynamic aerosol lens
    Bahreini, Roya
    Dunlea, Edward J.
    Matthew, Brendan M.
    Simons, Craig
    Docherty, Kenneth S.
    DeCarlo, Peter F.
    Jimenez, Jose L.
    Brock, Charles A.
    Middlebrook, Ann M.
    [J]. AEROSOL SCIENCE AND TECHNOLOGY, 2008, 42 (06) : 465 - 471
  • [3] Evolution of the chemical fingerprint of biomass burning organic aerosol during aging
    Bertrand, Amelie
    Stefenelli, Giulia
    Jen, Coty N.
    Pieber, Simone M.
    Bruns, Emily A.
    Ni, Haiyan
    Temime-Roussel, Brice
    Slowik, Jay G.
    Goldstein, Allen H.
    El Haddad, Imad
    Baltensperger, Urs
    Prevot, Andre S. H.
    Wortham, Henri
    Marchand, Nicolas
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (10) : 7607 - 7624
  • [4] Polarizabilities of solvents from the chemical composition
    Bosque, R
    Sales, J
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (05): : 1154 - 1163
  • [5] Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products
    Brock, Charles A.
    Williamson, Christina
    Kupc, Agnieszka
    Froyd, Karl D.
    Erdesz, Frank
    Wagner, Nicholas
    Richardson, Matthews
    Schwarz, Joshua P.
    Gao, Ru-Shan
    Katich, Joseph M.
    Campuzano-Jost, Pedro
    Nault, Benjamin A.
    Schroder, Jason C.
    Jimenez, Jose L.
    Weinzierl, Bernadett
    Dollner, Maximilian
    Bui, ThaoPaul
    Murphy, Daniel M.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (06) : 3081 - 3099
  • [6] Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications
    Canagaratna, M. R.
    Jimenez, J. L.
    Kroll, J. H.
    Chen, Q.
    Kessler, S. H.
    Massoli, P.
    Hildebrandt Ruiz, L.
    Fortner, E.
    Williams, L. R.
    Wilson, K. R.
    Surratt, J. D.
    Donahue, N. M.
    Jayne, J. T.
    Worsnop, D. R.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (01) : 253 - 272
  • [7] A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin
    Collard, Francois-Xavier
    Blin, Joel
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 38 : 594 - 608
  • [8] Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign
    Collier, Sonya
    Zhou, Shan
    Onasch, Timothy B.
    Jaffe, Daniel A.
    Kleinman, Lawrence
    Sedlacek, Arthur J., III
    Briggs, Nicole L.
    Hee, Jonathan
    Fortner, Edward
    Shilling, John E.
    Worsnop, Douglas
    Yokelson, Robert J.
    Parworth, Caroline
    Ge, Xinlei
    Xu, Jianzhong
    Butterfield, Zachary
    Chand, Duli
    Dubey, Manvendra K.
    Pekour, Mikhail S.
    Springston, Stephen
    Zhang, Qi
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (16) : 8613 - 8622
  • [9] High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forests of Surinam
    Crutzen, PJ
    Williams, J
    Pöschl, U
    Hoor, P
    Fischer, H
    Warneke, C
    Holzinger, R
    Hansel, A
    Lindinger, W
    Scheeren, B
    Lelieveld, J
    [J]. ATMOSPHERIC ENVIRONMENT, 2000, 34 (08) : 1161 - 1165
  • [10] Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies
    Cubison, M. J.
    Ortega, A. M.
    Hayes, P. L.
    Farmer, D. K.
    Day, D.
    Lechner, M. J.
    Brune, W. H.
    Apel, E.
    Diskin, G. S.
    Fisher, J. A.
    Fuelberg, H. E.
    Hecobian, A.
    Knapp, D. J.
    Mikoviny, T.
    Riemer, D.
    Sachse, G. W.
    Sessions, W.
    Weber, R. J.
    Weinheimer, A. J.
    Wisthaler, A.
    Jimenez, J. L.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (23) : 12049 - 12064