Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model

被引:55
作者
Pearson, Brodie [1 ]
Fox-Kemper, Baylor [1 ]
Bachman, Scott [2 ]
Bryan, Frank [3 ]
机构
[1] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02906 USA
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
[3] NCAR, Boulder, CO USA
基金
美国国家科学基金会;
关键词
Mesoscale eddies; Large eddy simulation; Global climate models; Subgrid models; ANTARCTIC CIRCUMPOLAR CURRENT; OCEAN CIRCULATION; PART I; GEOSTROPHIC TURBULENCE; NUMERICAL-SIMULATION; CLIMATE-CHANGE; GULF-STREAM; RESOLUTION; TRANSPORT; SENSITIVITY;
D O I
10.1016/j.ocemod.2017.05.007
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Two parameterizations for horizontal mixing of momentum and tracers by subgrid mesoscale eddies are implemented in a high-resolution global ocean model. These parameterizations follow on the techniques of large eddy simulation (LES). The theory underlying one parameterization (2D Leith due to Leith, 1996) is that of enstrophy cascades in two-dimensional turbulence, while the other (QG Leith) is designed for potential enstrophy cascades in quasi-geostrophic turbulence. Simulations using each of these parameterizations are compared with a control simulation using standard biharmonic horizontal mixing. Simulations using the 2D Leith and QG Leith parameterizations are more realistic than those using biharmonic mixing. In particular, the 2D Leith and QG Leith simulations have more energy in resolved mesoscale eddies, have a spectral slope more consistent with turbulence theory (an inertial enstrophy or potential enstrophy cascade), have bottom drag and vertical viscosity as the primary sinks of energy instead of lateral friction, and have isoneutral parameterized mesoscale tracer transport. The parameterization choice also affects mass transports, but the impact varies regionally in magnitude and sign. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:42 / 58
页数:17
相关论文
共 161 条
[1]   Global surface eddy diffusivities derived from satellite altimetry [J].
Abernathey, R. P. ;
Marshall, J. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (02) :901-916
[2]   Diagnostics of isopycnal mixing in a circumpolar channel [J].
Abernathey, Ryan ;
Ferreira, David ;
Klocker, Andreas .
OCEAN MODELLING, 2013, 72 :1-16
[3]   Enhancement of Mesoscale Eddy Stirring at Steering Levels in the Southern Ocean [J].
Abernathey, Ryan ;
Marshall, John ;
Mazloff, Matt ;
Shuckburgh, Emily .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2010, 40 (01) :170-184
[4]  
Arbic BK, 2004, J PHYS OCEANOGR, V34, P2257, DOI 10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO
[5]  
2
[6]   Cascade inequalities for forced - Dissipated geostrophic turbulence [J].
Arbic, Brian K. ;
Flierl, Glenn R. ;
Scott, Robert B. .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2007, 37 (06) :1470-1487
[7]   On Eddy Viscosity, Energy Cascades, and the Horizontal Resolution of Gridded Satellite Altimeter Products [J].
Arbic, Brian K. ;
Polzin, Kurt L. ;
Scott, Robert B. ;
Richman, James G. ;
Shriver, Jay F. .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2013, 43 (02) :283-300
[8]   Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models [J].
Arbic, Brian K. ;
Shriver, Jay F. ;
Hogan, Patrick J. ;
Hurlburt, Harley E. ;
McClean, Julie L. ;
Metzger, E. Joseph ;
Scott, Robert B. ;
Sen, Ayon ;
Smedstad, Ole Martin ;
Wallcraft, Alan J. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2009, 114
[9]   A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection [J].
Bachman, S. D. ;
Fox-Kemper, B. ;
Bryan, F. O. .
OCEAN MODELLING, 2015, 86 :1-14
[10]   A scale-aware subgrid model for quasi-geostrophic turbulence [J].
Bachman, Scott D. ;
Fox-Kemper, Baylor ;
Pearson, Brodie .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2017, 122 (02) :1529-1554