Nonlinear and semidefinite programming

被引:0
作者
Wright, SJ [1 ]
机构
[1] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
来源
TRENDS IN OPTIMIZATION | 2004年 / 61卷
关键词
nonlinear programming; semidefinite programming;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear and semidefinite programming are two areas of optimization that have seen renewed vitality in recent years. Analytical and geometrical techniques provide the mathematical underpinnings for the optimality theory and for the design of algorithms in both areas. This note outlines these topics, with an emphasis on recent developments.
引用
收藏
页码:115 / 137
页数:23
相关论文
共 55 条
[1]   Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results [J].
Alizadeh, F ;
Haeberly, JPA ;
Overton, ML .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (03) :746-768
[2]  
ALIZADEH F, 1992, ADV OPTIMIZATION PAR, P1
[3]  
Alizadeh F., 1991, THESIS U MINNESOTA
[4]  
[Anonymous], 1939, MINIMA FUNCTIONS SEV
[5]  
Ben-Tal A., 2001, MPS SIAM SERIES OPTI
[6]   Interior-point methods for nonconvex nonlinear programming: Filter methods and merit functions [J].
Benson, HY ;
Vanderbei, RJ ;
Shanno, DF .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) :257-272
[7]  
Bertsekas D., 1999, NONLINEAR PROGRAMMIN
[8]  
Bertsekas D., 2019, Reinforcement Learning and Optimal Control
[9]  
Bertsekas D, 2003, Convex Analysis and Optimization, V1
[10]   Solving a class of semidefinite programs via nonlinear programming [J].
Burer, S ;
Monteiro, RDC ;
Zhang, Y .
MATHEMATICAL PROGRAMMING, 2002, 93 (01) :97-122