Certain approximation properties of Brenke polynomials using Jakimovski-Leviatan operators

被引:10
|
作者
Wani, Shahid Ahmad [1 ]
Mursaleen, M. [2 ,3 ]
Nisar, Kottakkaran Sooppy [4 ]
机构
[1] Univ Kashmir, Dept CSE, North Campus, Srinagar, India
[2] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] St 1 West, Aligarh 202002, Uttar Pradesh, India
[4] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawser 11991, Saudi Arabia
关键词
Szasz operators; Brenke type polynomials; Jakimovski-Leviatan operators; Modulus of continuity; Weighted space; 40A30; 41A10; 41A25; 41A36;
D O I
10.1186/s13660-021-02639-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we establish the approximation by Durrmeyer type Jakimovski-Leviatan operators involving the Brenke type polynomials. The positive linear operators are constructed for the Brenke polynomials, and thus approximation properties for these polynomials are obtained. The order of convergence and the weighted approximation are also considered. Finally, the Voronovskaya type theorem is demonstrated for some particular case of these polynomials.
引用
收藏
页数:16
相关论文
共 46 条
  • [1] Certain approximation properties of Brenke polynomials using Jakimovski–Leviatan operators
    Shahid Ahmad Wani
    M. Mursaleen
    Kottakkaran Sooppy Nisar
    Journal of Inequalities and Applications, 2021
  • [2] Approximation by Chlodowsky type Jakimovski-Leviatan operators
    Buyukyazici, Ibrahim
    Tanberkan, Hande
    Serenbay, Sevilay Kirci
    Atakut, Cigdem
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 153 - 163
  • [3] Approximation by Modified Integral Type Jakimovski-Leviatan Operators
    Atakut, Cigdem
    Buyukyazici, Ibrahim
    FILOMAT, 2016, 30 (01) : 29 - 39
  • [4] Unveiling the Potential of Sheffer Polynomials: Exploring Approximation Features with Jakimovski-Leviatan Operators
    Zayed, Mohra
    Wani, Shahid Ahmad
    Bhat, Mohammad Younus
    MATHEMATICS, 2023, 11 (16)
  • [5] Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Ansari, Khursheed J.
    Mursaleen, M.
    Rahman, Shagufta
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1007 - 1024
  • [6] STANCU VARIANT OF JAKIMOVSKI-LEVIATAN-DURRMEYER OPERATORS INVOLVING BRENKE TYPE POLYNOMIALS
    Agrawal, Purshottam Narain
    Singh, Sompal
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024, 7 (01): : 1 - 19
  • [7] Generalization of Jakimovski-Leviatan type Szasz operators
    Sucu, Sezgin
    Varma, Serhan
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 977 - 983
  • [8] Approximation results for Beta Jakimovski-Leviatan type operators via q-analogue
    Nasiruzzaman, Md.
    Tom, Mohammed A. O.
    Serra-Capizzano, Stefano
    Rao, Nadeem
    Ayman-Mursaleen, Mohammad
    FILOMAT, 2023, 37 (24) : 8389 - 8404
  • [9] Approximation by Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials
    Mursaleen, M.
    AL-Abeid, A. A. H.
    Ansari, Khursheed J.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1251 - 1265
  • [10] On Voronovskaya Type Result for Generalized Jakimovski-Leviatan Operators
    Yilmaz, Mine Menekse
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094