Nanoengineered Granular Hydrogel Bioinks with Preserved Interconnected Microporosity for Extrusion Bioprinting

被引:51
作者
Ataie, Zaman [1 ]
Kheirabadi, Sina [1 ]
Zhang, Jenna Wanjing [2 ]
Kedzierski, Alexander [3 ]
Petrosky, Carter [1 ]
Jiang, Rhea [1 ]
Vollberg, Christian [2 ,3 ]
Sheikhi, Amir [1 ,3 ]
机构
[1] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Biomed Engn, University Pk, PA 16802 USA
关键词
3D bioprinting; granular bioinks; jamming; microgels; porous scaffolds; tissue engineering; FABRICATION; SCAFFOLDS; PHYSICS; DESIGN; GELS;
D O I
10.1002/smll.202202390
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D bioprinting of granular hydrogels comprising discrete hydrogel microparticles (microgels) may overcome the intrinsic structural limitations of bulk (nanoporous) hydrogel bioinks, enabling the fabrication of modular thick tissue constructs. The additive manufacturing of granular scaffolds has predominantly relied on highly jammed microgels to render the particulate suspensions shear yielding and extrudable. This inevitably compromises void spaces between microgels (microporosity), defeating rapid cell penetration, facile metabolite and oxygen transfer, and cell viability. Here, this persistent bottleneck is overcome by programming microgels with reversible interfacial nanoparticle self-assembly, enabling the fabrication of nanoengineered granular bioinks (NGB) with well-preserved microporosity, enhanced printability, and shape fidelity. The microporous architecture of bioprinted NGB constructs permits immediate post-printing 3D cell seeding, which may expand the library of bioinks via circumventing the necessity of bioorthogonality for cell-laden scaffold formation. This work opens new opportunities for the 3D bioprinting of tissue engineering microporous scaffolds beyond the traditional biofabrication window.
引用
收藏
页数:16
相关论文
共 63 条
[51]   The bioprinting roadmap [J].
Sun, Wei ;
Starly, Binil ;
Daly, Andrew C. ;
Burdick, Jason A. ;
Groll, Juergen ;
Skeldon, Gregor ;
Shu, Wenmiao ;
Sakai, Yasuyuki ;
Shinohara, Marie ;
Nishikawa, Masaki ;
Jang, Jinah ;
Cho, Dong-Woo ;
Nie, Minghao ;
Takeuchi, Shoji ;
Ostrovidov, Serge ;
Khademhosseini, Ali ;
Kamm, Roger D. ;
Mironov, Vladimir ;
Moroni, Lorenzo ;
Ozbolat, Ibrahim T. .
BIOFABRICATION, 2020, 12 (02)
[52]   Structural and rheological properties of methacrylamide modified gelatin hydrogels [J].
Van den Bulcke, AI ;
Bogdanov, B ;
De Rooze, N ;
Schacht, EH ;
Cornelissen, M ;
Berghmans, H .
BIOMACROMOLECULES, 2000, 1 (01) :31-38
[53]   Jamming of soft particles: geometry, mechanics, scaling and isostaticity [J].
van Hecke, M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (03)
[54]   Generalizing hydrogel microparticles into a new class of bioinks for extrusion bioprinting [J].
Xin, Shangjing ;
Deo, Kaivalya A. ;
Dai, Jing ;
Pandian, Navaneeth Krishna Rajeeva ;
Chimene, David ;
Moebius, Robert M. ;
Jain, Abhishek ;
Han, Arum ;
Gaharwar, Akhilesh K. ;
Alge, Daniel L. .
SCIENCE ADVANCES, 2021, 7 (42)
[55]   Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting [J].
Xin, Shangjing ;
Chimene, David ;
Garza, Jay E. ;
Gaharwar, Akhilesh K. ;
Alge, Daniel L. .
BIOMATERIALS SCIENCE, 2019, 7 (03) :1179-1187
[56]   Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses [J].
Yao, Tianyun ;
Ye, Juan ;
Deng, Zichen ;
Zhang, Kai ;
Ma, Yongbin ;
Ouyang, Huajiang .
COMPOSITES PART B-ENGINEERING, 2020, 188
[57]  
Yongcong F., 2021, ADV FUNCT MATER, V32
[58]   Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives [J].
Yue, Kan ;
Li, Xiuyu ;
Schrobback, Karsten ;
Sheikhi, Amir ;
Annabi, Nasim ;
Leijten, Jeroen ;
Zhang, Weijia ;
Zhang, Yu Shrike ;
Hutmacher, Dietmar W. ;
Klein, Travis J. ;
Khademhosseini, Ali .
BIOMATERIALS, 2017, 139 :163-171
[59]   Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels [J].
Yue, Kan ;
Trujillo-de Santiago, Grissel ;
Moises Alvarez, Mario ;
Tamayol, Ali ;
Annabi, Nasim ;
Khademhosseini, Ali .
BIOMATERIALS, 2015, 73 :254-271
[60]   Direct 3D Printed Biomimetic Scaffolds Based on Hydrogel Microparticles for Cell Spheroid Growth [J].
Zhang, Hua ;
Cong, Yang ;
Osi, Amarachi Rosemary ;
Zhou, Yang ;
Huang, Fangcheng ;
Zaccaria, Remo P. ;
Chen, Jing ;
Wang, Rong ;
Fu, Jun .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (13)