EPILEPSY DETECTION USING DETRENDED FLUCTUATION ANALYSIS

被引:8
作者
Shalbaf, Reza [1 ]
Hosseini, Pegah Tayaranian [2 ]
Analoui, Morteza [3 ]
机构
[1] Iran Univ Sci & Technol, Dept Elect Engn, Tehran, Iran
[2] Amirkabir Univ Technol, Dept Biomed Engn, Tehran, Iran
[3] Iran Univ Sci & Technol, Dept Comp Engn, Tehran, Iran
来源
PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION | 2009年
关键词
Detrended fluctuation analysis; linear discriminant analysis; standard deviation; seizure detection; EEG; CLASSIFICATION;
D O I
10.1109/ICWAPR.2009.5207454
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Epilepsy is a disorder of the central nervous system characterized by the loss of consciousness and convulsions. If some early warning signal of an upcoming seizure (diagnosis of preictal period) could be detected, proper treatment could be applied to the patient to help prevent the seizure. In (his article, Detrended Fluctuation Analysis (DFA) has been introduced and used to extract the DFA feature from EEG signal. DFA is a scaling analysis method that provides a simple quantitative parameter to represent the correlation properties of a signal. Using this feature along with Standard Deviation of EEG signal, we come to 100% separation of Normal, Preictal, and Ictal states of the brain.
引用
收藏
页码:235 / +
页数:2
相关论文
共 14 条
  • [1] The use of multiple measurements in taxonomic problems
    Fisher, RA
    [J]. ANNALS OF EUGENICS, 1936, 7 : 179 - 188
  • [2] Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
    Ghosh-Dastidar, Samanwoy
    Adeli, Hojat
    Dadmehr, Nahid
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (09) : 1545 - 1551
  • [3] Optimal fractal-scaling analysis of human EEG dynamic for depth of anesthesia quantification
    Gifani, P.
    Rabiee, H. R.
    Hashemi, M. H.
    Taslimi, P.
    Ghanbari, M.
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2007, 344 (3-4): : 212 - 229
  • [4] Gifani P., 2005, 3rd IEE International Seminar on Medical Applications of Signal Processing, P7, DOI 10.1049/ic:20050323
  • [5] GIFANI P, 2006, P IEEE EMBS C
  • [6] Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    Güler, NF
    Übeyli, ED
    Güler, I
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2005, 29 (03) : 506 - 514
  • [7] Entropies for detection of epilepsy in EEG
    Kannathal, N
    Choo, ML
    Acharya, UR
    Sadasivan, PK
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2005, 80 (03) : 187 - 194
  • [8] Detecting long-range correlations with detrended fluctuation analysis
    Kantelhardt, JW
    Koscielny-Bunde, E
    Rego, HHA
    Havlin, S
    Bunde, A
    [J]. PHYSICA A, 2001, 295 (3-4): : 441 - 454
  • [9] MOHSENI HR, 2006, ENG MED BIOL SOC 200, P6724
  • [10] A neural-network-based detection of epilepsy
    Nigam, VP
    Graupe, D
    [J]. NEUROLOGICAL RESEARCH, 2004, 26 (01) : 55 - 60