High performance membrane-electrode assembly based on a surface-modified membrane

被引:7
作者
Han, Sangil
Lee, Jang Woo
Kwak, Chan
Chai, Geun Seok
Son, In Hyuk
Jang, Moon Yup
An, Sung Guk
Cho, Sung Yong
Kim, Jun Young
Kim, Hyung Wook
Serov, Alexey Alexandrovych
Yoo, Youngtai
Nam, Kie Hyun
机构
[1] Samsung SDI Co Ltd, Energy Team 3, Corp R&D Ctr, Suwon 443391, Gyeonggido, South Korea
[2] Samsung SDI Co Ltd, Energy Team 1, Corp R&D Ctr, Suwon 443391, Gyeonggido, South Korea
[3] Konkuk Univ, Coll Engn, Dept Chem & Mat Engn, Seoul 143701, South Korea
关键词
direct methanol fuel cell; nodule-like gold; surface-modified membrane; carbon monoxide stripping; Nafion (R); swelling;
D O I
10.1016/j.jpowsour.2006.12.095
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A surface-modified membrane is prepared using a sputtering technique that deposits gold directly on a Nation (R) 115 membrane surface that is roughened with silicon carbide paper. The surface-modified membranes are characterized by means of a scanning electron microscope (SEM), differential scanning calorimetry (DSC), and water contact-angle analysis. A single direct methanol fuel cell (DMFC) with a surface-modified membrane exhibits enhanced performance (160 mW cm(-2)), while a bare Nafion (R) 115 cell yields 113 MW cm(-2) at 0.4 V and an operating temperature of 70 degrees C. From FE-SEM images and COad stripping voltammograms, it is also found that the gold layer is composed of clusters of porous nodule-like particles, which indicates that an anode with nodule-like gold leads to the preferential oxidation of carbon monoxide. These results suggest that the topology of gold in the interfacial area and its electrocatalytic nature may be the critical factors that affect DMFC performance. (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:74 / 78
页数:5
相关论文
共 15 条
[1]   Methanol crossover in direct methanol fuel cells: a link between power and energy density [J].
Gurau, B ;
Smotkin, ES .
JOURNAL OF POWER SOURCES, 2002, 112 (02) :339-352
[2]   Increasing proton exchange membrane fuel cell catalyst effectiveness through sputter deposition [J].
Haug, AT ;
White, RE ;
Weidner, JW ;
Huang, W ;
Shi, S ;
Stoner, T ;
Rana, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (03) :A280-A287
[3]   FTIR and mass spectrometric study of HCOOH interaction with TiO2 supported Rh and Au catalysts [J].
Kecskés, T ;
Raskó, J ;
Kiss, J .
APPLIED CATALYSIS A-GENERAL, 2004, 268 (1-2) :9-16
[4]   Powering fuel cells with CO via aqueous polyoxometalates and gold catalysts [J].
Kim, WB ;
Voitl, T ;
Rodriguez-Rivera, GJ ;
Dumesic, JA .
SCIENCE, 2004, 305 (5688) :1280-1283
[5]   Performance and impedance under various catalyst layer thicknesses in DMFC [J].
Lee, JS ;
Han, KI ;
Park, SO ;
Kim, HN ;
Kim, H .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :807-810
[6]   Methanol and proton transport control by using layered double hydroxide nanoplatelets for direct methanol fuel cell [J].
Lee, K ;
Nam, JH ;
Lee, JH ;
Lee, Y ;
Cho, SM ;
Jung, CH ;
Choi, HG ;
Chang, YY ;
Kwon, YU ;
Nam, JD .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (01) :113-118
[7]   Electro-oxidation of methanol on gold nanoparticles supported on Pt/MoOx/C [J].
Miyazaki, K ;
Matsuoka, K ;
Iriyama, Y ;
Abe, T ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (09) :A1870-A1873
[8]   Pd and Pd-Cu alloy deposited nafion membranes for reduction of methanol crossover in direct methanol fuel cells [J].
Prabhuram, J ;
Zhao, TS ;
Liang, ZX ;
Yang, H ;
Wong, CW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (07) :A1390-A1397
[9]   Gold nanoparticles dispersed polyaniline grafted multiwall carbon nanotubes as newer electrocatalysts: Preparation and performances for methanol oxidation [J].
Santhosh, P ;
Gopalan, A ;
Lee, KP .
JOURNAL OF CATALYSIS, 2006, 238 (01) :177-185
[10]   Electrochemical and microscopic characterisation of platinum-coated perfluorosulfonic acid (Nafion 117) materials [J].
Sheppard, SA ;
Campbell, SA ;
Smith, JR ;
Lloyd, GW ;
Ralph, TR ;
Walsh, FC .
ANALYST, 1998, 123 (10) :1923-1929