The number of varieties in a family which contain a rational point

被引:11
作者
Loughran, Daniel [1 ]
机构
[1] Univ Manchester, Sch Math, Oxford Rd, Manchester M13 9PL, Lancs, England
关键词
Rational points; families of varieties; Brauer groups; toric varieties; TERNARY QUADRATIC-FORMS; BOUNDED HEIGHT; MANINS CONJECTURE; HASSE PRINCIPLE; BRAUER GROUP; FIBRATIONS; SURFACES; PENCILS;
D O I
10.4171/JEMS/818
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of counting the number of varieties in a family over a number field which contain a rational point. In particular, for products of Brauer-Severi varieties and closely related counting functions associated to Brauer group elements. Using harmonic analysis on toric varieties, we provide a positive answer to a question of Serre on such counting functions in some cases. We also formulate some conjectures on generalisations of Serre's problem.
引用
收藏
页码:2539 / 2588
页数:50
相关论文
共 57 条
[21]   THE PROPORTION OF FAILURES OF THE HASSE NORM PRINCIPLE [J].
Browning, T. D. ;
Newton, R. .
MATHEMATIKA, 2016, 62 (02) :337-347
[22]   Rational points on pencils of conics and quadrics with many degenerate fibres [J].
Browning, T. D. ;
Matthiesen, L. ;
Skorobogatov, A. N. .
ANNALS OF MATHEMATICS, 2014, 180 (01) :381-402
[23]  
CASSELS J. W. S., 2010, ALGEBRAIC NUMBER THE
[24]  
Colliot-Thélène JL, 2008, J REINE ANGEW MATH, V618, P77
[25]   Pathologies of the Brauer-Manin obstruction [J].
Colliot-Thelene, Jean-Louis ;
Pal, Ambrus ;
Skorobogatov, Alexei N. .
MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (3-4) :799-817
[26]   Unramified Brauer group of homogeneous spaces of tori [J].
Colliot-Thelene, Jean-Louis .
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2014, 26 (01) :69-83
[27]   Equivariant compactification of a torus (According to Brylinski and Kuennemann) [J].
Colliot-Thélène, JL ;
Harari, D ;
Skorobogatov, AN .
EXPOSITIONES MATHEMATICAE, 2005, 23 (02) :161-170
[28]  
COLLIOTTHELENE JL, 1994, J REINE ANGEW MATH, V453, P49
[29]  
COLLIOTTHELENE JL, 1977, ANN SCI ECOLE NORM S, V10, P175
[30]   Density of Chatelet surfaces failing the Hasse principle [J].
de la Breteche, R. ;
Browning, T. D. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 :1030-1078