Discrimination of Avian Influenza Virus Subtypes using Host-Cell Infection Fingerprinting by a Sulfinate-based Fluorescence Superoxide Probe

被引:28
作者
Hong, Seong Cheol [1 ,2 ]
Murale, Dhiraj P. [1 ,2 ]
Jang, Se-Young [1 ,2 ]
Haque, Md. Mamunul [1 ,2 ]
Seo, Minah [3 ]
Lee, Seok [3 ]
Woo, Deok Ha [3 ]
Kwon, Junghoon [5 ]
Song, Chang-Seon [5 ]
Kim, Yun Kyung [2 ,4 ]
Lee, Jun-Seok [1 ,2 ]
机构
[1] KIST, Mol Recognit Res Ctr, 5,Hwarang Ro 14 Gil, Seoul 02792, South Korea
[2] KIST Sch, 5,Hwarang Ro 14 Gil, Seoul 02792, South Korea
[3] KIST, Sensor Syst Res Ctr, Seoul, South Korea
[4] KIST, Convergence Res Ctr Diag Treatment & Care Syst De, Seoul, South Korea
[5] Konkuk Univ, Coll Vet Med, Seoul 05029, South Korea
基金
新加坡国家研究基金会;
关键词
avian influenza; discrimination; fluorescent probes; principal component analysis; superoxide; A VIRUS; COLORIMETRIC IDENTIFICATION; OXIDATIVE-STRESS; SENSOR ARRAYS; HYDROETHIDINE; NANOPARTICLE; MEMBRANE; PROTEINS; GLYCANS; INJURY;
D O I
10.1002/anie.201804412
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The current gold-standard diagnosis method for avian influenza (AI) is an embryonic egg-based hemagglutination assay followed by immunoblotting or PCR sequencing to confirm subtypes. It requires, however, specialized facilities to handle egg inoculation and incubation, and the subtyping methods relied on costly reagents. Now, the first differential sensing approach to distinguish AI subtypes is demonstrated using series of cell lines and a fluorescent sensor. Susceptibility of AI virus differs depending on genetic backgrounds of host cells. Cells were examined from different organ origins, and the infection patterns against a panel of cells were utilized for AI virus subtyping. To quantify AI infection, a highly cell-permeable fluorescent superoxide sensor was designed to visualize infection. This differential sensing strategy successfully proved discriminations of AI subtypes and demonstrated as a useful primary screening platform to monitor a large number of samples.
引用
收藏
页码:9716 / 9721
页数:6
相关论文
共 43 条
[1]   Cross-reactive chemical sensor arrays [J].
Albert, KJ ;
Lewis, NS ;
Schauer, CL ;
Sotzing, GA ;
Stitzel, SE ;
Vaid, TP ;
Walt, DR .
CHEMICAL REVIEWS, 2000, 100 (07) :2595-2626
[2]  
[Anonymous], 2017, OIE SITUATION REPORT
[3]   Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays [J].
Bajaj, Avinash ;
Miranda, Oscar R. ;
Kim, Ik-Bum ;
Phillips, Ronnie L. ;
Jerry, D. Joseph ;
Bunz, Uwe H. F. ;
Rotello, Vincent M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (27) :10912-10916
[4]   Ocular Tropism of Respiratory Viruses [J].
Belser, Jessica A. ;
Rota, Paul A. ;
Tumpey, Terrence M. .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2013, 77 (01) :144-156
[5]   Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical [J].
Benov, L ;
Sztejnberg, L ;
Fridovich, I .
FREE RADICAL BIOLOGY AND MEDICINE, 1998, 25 (07) :826-831
[6]   A chemosensor array for the colorimetric identification of 20 natural amino acids [J].
Buryak, A ;
Severin, K .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (11) :3700-3701
[7]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[8]   H5N1 virus outbreak in migratory waterfowl [J].
Chen, H ;
Smith, GJD ;
Zhang, SY ;
Qin, K ;
Wang, J ;
Li, KS ;
Webster, RG ;
Peiris, JSM ;
Guan, Y .
NATURE, 2005, 436 (7048) :191-192
[9]  
De M, 2009, NAT CHEM, V1, P461, DOI [10.1038/nchem.334, 10.1038/NCHEM.334]
[10]   Influenza A virus isolation, culture and identification [J].
Eisfeld, Amie J. ;
Neumann, Gabriele ;
Kawaoka, Yoshihiro .
NATURE PROTOCOLS, 2014, 9 (11) :2663-2681