Spontaneous shrinkage of droplet on a wetting surface in the phase-field model

被引:13
作者
Zhang, Chunhua [1 ]
Guo, Zhaoli [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
基金
美国国家科学基金会;
关键词
DIFFUSE-INTERFACE METHOD; ALLOY SOLIDIFICATION; 2-PHASE FLOWS; ENERGY;
D O I
10.1103/PhysRevE.100.061302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Phase-field theory is widely used to model multiphase flow. The fact that a drop can shrink or grow spontaneously due to the redistribution of interface and bulk energies to minimize the system energy may produce ill effects on the simulation. In this Rapid Communication, the spontaneous behavior of a drop on a partially wetting surface is investigated. It is found that there exists a critical radius dependent on the contact angle, the domain size, and the interface width, below which the drop will eventually disappear. In particular, the critical radius can be very large when the surface becomes very hydrophilic. The theoretical prediction of the critical radius is verified numerically by simulating a drop on a surface with various contact angles, the domain sizes, and the interface widths.
引用
收藏
页数:6
相关论文
共 29 条
[1]  
Al-Housseiny TT, 2012, NAT PHYS, V8, P747, DOI [10.1038/NPHYS2396, 10.1038/nphys2396]
[2]   A review on phase-field models of brittle fracture and a new fast hybrid formulation [J].
Ambati, Marreddy ;
Gerasimov, Tymofiy ;
De Lorenzis, Laura .
COMPUTATIONAL MECHANICS, 2015, 55 (02) :383-405
[3]   Computation of multiphase systems with phase field models [J].
Badalassi, VE ;
Ceniceros, HD ;
Banerjee, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 190 (02) :371-397
[4]   Wetting and spreading [J].
Bonn, Daniel ;
Eggers, Jens ;
Indekeu, Joseph ;
Meunier, Jacques ;
Rolley, Etienne .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :739-805
[5]   Lattice Boltzmann simulations of contact line motion. II. Binary fluids [J].
Briant, AJ ;
Yeomans, JM .
PHYSICAL REVIEW E, 2004, 69 (03) :9
[6]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[7]   Macroscopic Phase-Field Model of Partial Wetting: Bubbles in a Capillary Tube [J].
Cueto-Felgueroso, Luis ;
Juanes, Ruben .
PHYSICAL REVIEW LETTERS, 2012, 108 (14)
[8]   Wetting condition in diffuse interface simulations of contact line motion [J].
Ding, Hang ;
Spelt, Peter D. M. .
PHYSICAL REVIEW E, 2007, 75 (04)
[9]   Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface [J].
Fu, Xiaojing ;
Cueto-Felgueroso, Luis ;
Juanes, Ruben .
PHYSICAL REVIEW LETTERS, 2018, 120 (14)
[10]   Contact-line dynamics of a diffuse fluid interface [J].
Jacqmin, D .
JOURNAL OF FLUID MECHANICS, 2000, 402 :57-88