OSCILLATORY BEHAVIOR OF A CERTAIN CLASS OF SECOND-ORDER NONLINEAR PERTURBED DYNAMIC EQUATIONS ON TIME SCALES

被引:2
作者
Saker, Samir H. [1 ,2 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
oscillation; perturbed dynamic equations; time scale; CRITERIA; BOUNDEDNESS;
D O I
10.4134/JKMS.2010.47.4.659
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the asymptotic behavior of solutions of the second-order nonlinear perturbed dynamic equation (r(t)x(Delta) (t))(Delta) + F(t, x(sigma))) = G (t, x(sigma), (x(Delta))(sigma)) on a time scale T. By using a new technique we establish some sufficient conditions which ensure that every solution oscillates or converges to zero. Our results improve the known oscillation results on the literature for the perturbed dynamic equations on time scales. Some examples illustrating our main results are given.
引用
收藏
页码:659 / 674
页数:16
相关论文
共 23 条
[1]  
Agarwal R, 2002, MIS QUART, V1, P1
[2]  
Agarwal R.P., 2005, Can. Appl. Math. Quart, V13, P1
[3]   Oscillation criteria for second-order nonlinear neutral delay dynamic equations [J].
Agarwal, RP ;
O'Regan, D ;
Saker, SH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 300 (01) :203-217
[4]  
Akin-Bohner E, 2007, ELECTRON T NUMER ANA, V27, P1
[5]  
BOHNER EA, 2003, J DIFFER EQUATIONS, V9, P603
[6]   Oscillation criteria for perturbed nonlinear dynamic equations [J].
Bohner, M ;
Saker, SH .
MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (3-4) :249-260
[7]   Oscillation of second order nonlinear dynamic equations on time scales [J].
Bohner, M ;
Saker, SH .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (04) :1239-1254
[8]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[9]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
[10]  
Erbe L, 2006, DYNAM SYST APPL, V15, P65