Oxidative Steam Reforming of Raw Bio-Oil over Supported and Bulk Ni Catalysts for Hydrogen Production

被引:33
|
作者
Arandia, Aitor [1 ]
Remiro, Aingeru [1 ]
Garcia, Veronica [2 ]
Castano, Pedro [1 ]
Bilbao, Javier [1 ]
Gayubo, Ana G. [1 ]
机构
[1] Univ Basque Country, Chem Engn Dept, POB 644, Bilbao 48080, Spain
[2] Univ Ind Santander, Grp Invest Quim Estruct GIQUE, Bucaramanga 680002, Colombia
关键词
bio-oil; Ni catalyst; oxidative steam reforming; H-2; production; deactivation; regeneration; LANIO3 PEROVSKITE CATALYST; CO-PRECIPITATED NI-CEO2; OF-THE-ART; PYROLYSIS OIL; NI/LA2O3-ALPHA-AL2O3; CATALYST; COMBUSTION SYNTHESIS; AQUEOUS FRACTION; H-2; PRODUCTION; ETHANOL; METHANE;
D O I
10.3390/catal8080322
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Several Ni catalysts of supported (on La2O3-alpha Al2O3, CeO2, and CeO2-ZrO2) or bulk types (Ni-La perovskites and NiAl2O4 spinel) have been tested in the oxidative steam reforming (OSR) of raw bio-oil, and special attention has been paid to the catalysts' regenerability by means of studies on reaction-regeneration cycles. The experimental set-up consists of two units in series, for the separation of pyrolytic lignin in the first step (at 500 degrees C) and the on line OSR of the remaining oxygenates in a fluidized bed reactor at 700 degrees C. The spent catalysts have been characterized by N-2 adsorption-desorption, X-ray diffraction and temperature programmed reduction, and temperature programmed oxidation (TPO). The results reveal that among the supported catalysts, the best balance between activity-H-2 selectivity-stability corresponds to Ni/La2O3-alpha Al2O3, due to its smaller Ni-0 particle size. Additionally, it is more selective to H-2 than perovskite catalysts and more stable than both perovskites and the spinel catalyst. However, the activity of the bulk NiAl2O4 spinel catalyst can be completely recovered after regeneration by coke combustion at 850 degrees C because the spinel structure is completely recovered, which facilitates the dispersion of Ni in the reduction step prior to reaction. Consequently, this catalyst is suitable for the OSR at a higher scale in reaction-regeneration cycles.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Hydrogen production via steam reforming of bio-oil model compounds over supported nickel catalysts
    Huaqing Xie
    Qingbo Yu
    Xin Yao
    Wenjun Duan
    Zongliang Zuo
    Qin Qin
    Journal of Energy Chemistry, 2015, (03) : 299 - 308
  • [2] Hydrogen production via steam reforming of bio-oil model compounds over supported nickel catalysts
    Xie, Huaqing
    Yu, Qingbo
    Yao, Xin
    Duan, Wenjun
    Zuo, Zongliang
    Qin, Qin
    JOURNAL OF ENERGY CHEMISTRY, 2015, 24 (03) : 299 - 308
  • [3] Hydrogen production via steam reforming of bio-oil model compounds over supported nickel catalysts
    Huaqing Xie
    Qingbo Yu
    Xin Yao
    Wenjun Duan
    Zongliang Zuo
    Qin Qin
    Journal of Energy Chemistry, 2015, 24 (03) : 299 - 308
  • [4] Biomass to hydrogen via catalytic steam reforming of bio-oil over Ni-supported alumina catalysts
    Seyedeyn-Azad, F.
    Salehi, E.
    Abedi, J.
    Harding, T.
    FUEL PROCESSING TECHNOLOGY, 2011, 92 (03) : 563 - 569
  • [5] Catalytic steam reforming of bio-oil aqueous fraction for hydrogen production over Ni-Mo supported on modified sepiolite catalysts
    Liu, Shaomin
    Chen, Mingqiang
    Chu, Lei
    Yang, Zhonglian
    Zhu, Chuanhao
    Wang, Jun
    Chen, Minggong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (10) : 3948 - 3955
  • [6] Production of hydrogen via steam reforming of bio-oil over Ni-based catalysts: Effect of support
    Azad, Fakhry Seyedeyn
    Abedi, Jalal
    Salehi, Ebrahim
    Harding, Thomas
    CHEMICAL ENGINEERING JOURNAL, 2012, 180 : 145 - 150
  • [7] Renewable hydrogen production via steam reforming of simulated bio-oil over Ni-based catalysts
    Italiano, C.
    Bizkarra, K.
    Barrio, V. L.
    Cambra, J. F.
    Pino, L.
    Vita, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (29) : 14671 - 14682
  • [8] Steam Reforming of Bio-Oil for Hydrogen Production: Effect of Ni-Co Bimetallic Catalysts
    Zhang, Youhua
    Li, Wenzhi
    Zhang, Suping
    Xu, Qingli
    Yan, Yongjie
    CHEMICAL ENGINEERING & TECHNOLOGY, 2012, 35 (02) : 302 - 308
  • [9] Catalytic steam reforming of bio-oil model compounds for hydrogen production over coal ash supported Ni catalyst
    Wang, Shurong
    Zhang, Fan
    Cai, Qinjie
    Li, Xinbao
    Zhu, Lingjun
    Wang, Qi
    Luo, Zhongyang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (05) : 2018 - 2025
  • [10] Hydrogen production via steam reforming of bio-oil components over calcium aluminate supported nickel and noble metal catalysts
    Vagia, Ekaterini Ch
    Lemonidou, Angeliki A.
    APPLIED CATALYSIS A-GENERAL, 2008, 351 (01) : 111 - 121