Determinant Representation for Some Transition Probabilities in the TASEP with Second Class Particles

被引:13
作者
Chatterjee, Sakuntala [1 ,2 ]
Schuetz, Gunter M. [1 ]
机构
[1] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
[2] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
关键词
Interacting particle systems; TASEP; Second class particles; Transition probability; DEPOSITION-EVAPORATION SYSTEMS; SIMPLE EXCLUSION PROCESS; MANY-BODY PROBLEM; MICROSCOPIC STRUCTURE; STATIONARY MEASURE; SHOCK PROFILES; DYNAMICS; FLUCTUATIONS; MODELS;
D O I
10.1007/s10955-010-0022-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the transition probabilities for the totally asymmetric simple exclusion process (TASEP) on the infinite integer lattice with a finite, but arbitrary number of first and second class particles. Using the Bethe ansatz we present an explicit expression of these quantities in terms of the Bethe wave function. In a next step it is proved rigorously that this expression can be written in a compact determinantal form for the case where the order of the first and second class particles does not change in time. An independent geometrical approach provides insight into these results and enables us to generalize the determinantal solution to the multi-class TASEP.
引用
收藏
页码:900 / 916
页数:17
相关论文
共 47 条
  • [1] REACTION-DIFFUSION PROCESSES AS PHYSICAL REALIZATIONS OF HECKE ALGEBRAS
    ALCARAZ, FC
    RITTENBERG, V
    [J]. PHYSICS LETTERS B, 1993, 314 (3-4) : 377 - 380
  • [2] The stationary measure of a 2-type totally asymmetric exclusion process
    Angel, O
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (04) : 625 - 635
  • [3] [Anonymous], 1999, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes
  • [4] Spectrum of a multi-species asymmetric simple exclusion process on a ring
    Arita, Chikashi
    Kuniba, Atsuo
    Sakai, Kazumitsu
    Sawabe, Tsuyoshi
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (34)
  • [5] JAMMING AND KINETICS OF DEPOSITION-EVAPORATION SYSTEMS AND ASSOCIATED QUANTUM SPIN MODELS
    BARMA, M
    GRYNBERG, MD
    STINCHCOMBE, RB
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (08) : 1033 - 1036
  • [6] BELITSKY V, 2002, ELECTRON J PROBAB, V7, P11
  • [7] Nonequilibrium steady states of matrix-product form: a solver's guide
    Blythe, R. A.
    Evans, M. R.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (46) : R333 - R441
  • [8] Large time asymptotics of growth models on space-like paths I: PushASEP
    Borodin, Alexei
    Ferrari, Patrik L.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1380 - 1418
  • [9] Fluctuation properties of the TASEP with periodic initial configuration
    Borodin, Alexei
    Ferrari, Patrik L.
    Praehofer, Michael
    Sasamoto, Tomohiro
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2007, 129 (5-6) : 1055 - 1080
  • [10] Brankov JG, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066136