Criss-Cross Attention Based Auto Encoder for Video Anomaly Event Detection

被引:1
|
作者
Wang, Jiaqi [1 ]
Zhang, Jie [2 ]
Ji, Genlin [2 ]
Sheng, Bo [3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Sch Comp & Elect Informat, Nanjing 210023, Peoples R China
[3] Univ Massachusetts, Dept Comp Sci, Boston, MA 02125 USA
来源
INTELLIGENT AUTOMATION AND SOFT COMPUTING | 2022年 / 34卷 / 03期
基金
美国国家科学基金会;
关键词
Video anomaly detection; bi-directional long short-term memory; convolutional autoencoder; Criss-Cross attention module; MIXTURES; NETWORKS;
D O I
10.32604/iasc.2022.029535
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The surveillance applications generate enormous video data and present challenges to video analysis for huge human labor cost. Reconstruction-based convolutional autoencoders have achieved great success in video anomaly detection for their ability of automatically detecting abnormal event. The approaches learn normal patterns only with the normal data in an unsupervised way due to the difficulty of collecting anomaly samples and obtaining anomaly annotations. But convolutional autoencoders have limitations in global feature extraction for the local receptive field of convolutional kernels. What is more, 2-dimensional convolution lacks the capability of capturing temporal information while videos change over time. In this paper, we propose a method established on Criss-Cross attention based AutoEncoder (CCAE) for capturing global visual features of sequential video frames. The method utilizes Criss-Cross attention based encoder to extract global appearance features. Another Criss-Cross attention module is embedded into bi-directional convolutional long short-term memory in hidden layer to explore global temporal features between frames. A decoder is executed to fuse global appearance and temporal features and reconstruct the frames. We perform extensive experiments on two public datasets UCSD Ped2 and CUHK Avenue. The experimental results demonstrate that CCAE achieves superior detection accuracy compared with other video anomaly detection approaches.
引用
收藏
页码:1629 / 1642
页数:14
相关论文
共 50 条
  • [1] Dual Attention Mechanisms Based Auto-Encoder for Video Anomaly Detection
    Gu, Jiatao
    Zeng, Jing
    Ji, Genlin
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 153 - 165
  • [2] Attention-based misaligned spatiotemporal auto-encoder for video anomaly detection
    Yang, Haiyan
    Liu, Shuning
    Wu, Mingxuan
    Chen, Hongbin
    Zeng, Delu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 285 - 297
  • [3] Multi Chunk Learning Based Auto Encoder for Video Anomaly Detection
    Qi, Xiaosha
    Ji, Genlin
    Zhang, Jie
    Sheng, Bo
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (03): : 1861 - 1875
  • [4] Appearance-Motion United Auto-Encoder Framework for Video Anomaly Detection
    Liu, Yang
    Liu, Jing
    Lin, Jieyu
    Zhao, Mengyang
    Song, Liang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (05) : 2498 - 2502
  • [5] Attention-Based Auto-Encoder Framework for Abnormal Driving Detection
    Liu, Jing
    Liu, Yang
    Wei, Donglai
    Ni, Wei
    Zeng, Xinhua
    Song, Liang
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 3150 - 3154
  • [6] Cross-Modal Attention Mechanism for Weakly Supervised Video Anomaly Detection
    Sun, Wenwen
    Cao, Lin
    Guo, Yanan
    Du, Kangning
    BIOMETRIC RECOGNITION, CCBR 2023, 2023, 14463 : 437 - 446
  • [7] Two-Stream Spatial-Temporal Auto-Encoder With Adversarial Training for Video Anomaly Detection
    Guo, Biao
    Liu, Mingrui
    He, Qian
    Jiang, Ming
    IEEE ACCESS, 2024, 12 : 125881 - 125889
  • [8] Cluster Attention Contrast for Video Anomaly Detection
    Wang, Ziming
    Zou, Yuexian
    Zhang, Zeming
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2463 - 2471
  • [9] Bridge anomaly detection based on reconstruction error and structural similarity of unsupervised convolutional auto-encoder
    Teng, Shuai
    Liu, Zongchao
    Luo, Wenjun
    Chen, Gongfa
    Cheng, Li
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (04): : 2221 - 2237
  • [10] Video anomaly detection method based on future frame prediction and attention mechanism
    Wang, Chenxu
    Yao, Yanxin
    Yao, Han
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 405 - 407