Constrained Clustering Problems: New Optimization Algorithms

被引:0
|
作者
Ibn-Khedher, Hatem [1 ]
Hadji, Makhlouf [2 ]
Ibn Khedher, Mohamed [2 ]
Khebbache, Selma [2 ]
机构
[1] ALTRAN Labs, F-78140 Velizy Villacoublay, France
[2] Inst Rech Technol SystemX, 8 Ave Vauve, F-91120 Palaiseau, France
来源
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2021), PT II | 2021年 / 12855卷
关键词
Constrained-clustering; K-Means; Combinatorial optimization;
D O I
10.1007/978-3-030-87897-9_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Constrained clustering problems are often considered in massive data clustering and analysis. They are used in modeling various issues in anomaly detection, classification, systems' misbehaviour, etc. In this paper, we focus on generalizing the K-Means clustering approach when involving linear constraints on the clusters' size. Indeed, to avoid local optimum clustering solutions which consists in empty clusters or clusters with few points, we propose linear integer programming approaches based on relaxation and rounding techniques to cope with scalability issues. We show the efficiency of the new proposed approach, and assess its performance using five data-sets from different domains.
引用
收藏
页码:159 / 170
页数:12
相关论文
共 50 条
  • [1] A study of K-Means-based algorithms for constrained clustering
    Covoes, Thiago F.
    Hruschka, Eduardo R.
    Ghosh, Joydeep
    INTELLIGENT DATA ANALYSIS, 2013, 17 (03) : 485 - 505
  • [2] Universal Algorithms for Clustering Problems
    Ganesh, Arun
    Maggs, Bruce M.
    Panigrahi, Debmalya
    ACM TRANSACTIONS ON ALGORITHMS, 2023, 19 (02)
  • [3] A Framework for Deep Constrained Clustering - Algorithms and Advances
    Zhang, Hongjing
    Basu, Sugato
    Davidson, Ian
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 11906 : 57 - 72
  • [4] Constrained balanced optimization problems
    Punnen, AP
    Nair, KPK
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 37 (09) : 157 - 163
  • [5] A new model for constrained clustering
    Un nouveau modèle pour la classification non supervisée sous contraintes
    1600, Lavoisier (28): : 523 - 545
  • [6] Scan Chain Clustering and Optimization with Constrained Clustering and Reinforcement Learning
    Abdul, Naiju Karim
    Antony, George
    Rao, Rahul M.
    Skariah, Suriya T.
    MLCAD '22: PROCEEDINGS OF THE 2022 ACM/IEEE 4TH WORKSHOP ON MACHINE LEARNING FOR CAD (MLCAD), 2022, : 83 - 89
  • [7] Approximate algorithms for constrained circular cutting problems
    Hifi, M
    M'Hallah, R
    COMPUTERS & OPERATIONS RESEARCH, 2004, 31 (05) : 675 - 694
  • [8] COLOR CONSTRAINED COMBINATORIAL OPTIMIZATION PROBLEMS
    HAMACHER, HW
    RENDL, F
    OPERATIONS RESEARCH LETTERS, 1991, 10 (04) : 211 - 219
  • [9] Towards more efficient local search algorithms for constrained clustering
    Gao, Jian
    Tao, Xiaoxia
    Cai, Shaowei
    INFORMATION SCIENCES, 2023, 621 : 287 - 307
  • [10] Automatic design of algorithms for optimization problems
    Contreras-Bolton, Carlos
    Parada, Victor
    2015 LATIN AMERICA CONGRESS ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2015,