Zero product preserving maps on Banach algebras of Lipschitz functions

被引:11
作者
Alaminos, J. [1 ]
Extremera, J. [1 ]
Villena, A. R. [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
关键词
Algebra of Lipschitz functions; Disjointness preserving map; Map preserving zero product; Fourier algebra; Weighted Fourier algebra;
D O I
10.1016/j.jmaa.2010.02.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (K, d) be a non-empty, compact metric space and alpha is an element of ]0, 1[. Let A be either lip(alpha)(K) or Lip(alpha)(K) and let B be a commutative unital Banach algebra. We show that every continuous linear map T : A -> B with the property that T(f)T(g) = 0 whenever f, g is an element of A are such that fg = 0 is of the form T = w Phi for some invertible element w in B and some continuous epimorphism Phi : A -> B. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 100
页数:7
相关论文
共 13 条
  • [1] Zero product preserving maps on C1 [0,1]
    Alaminos, J.
    Bresar, M.
    Cerne, M.
    Extremera, J.
    Villena, A. R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (02) : 472 - 481
  • [2] Alaminos J, 2007, P ROY SOC EDINB A, V137, P1
  • [3] Maps preserving zero products
    Alaminos, J.
    Bresar, M.
    Extremera, J.
    Villena, A. R.
    [J]. STUDIA MATHEMATICA, 2009, 193 (02) : 131 - 159
  • [4] ALAMINOS J, ISRAEL J MA IN PRESS, P4337
  • [5] ALAMINOS J, P ED MATH S IN PRESS
  • [6] Biseparating maps between Lipschitz function spaces
    Araujo, Jesus
    Dubarbie, Luis
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) : 191 - 200
  • [7] Dales H. G., 2000, London Mathematical Soci- ety Monographs New Series, V24
  • [8] EDWARDS RE, 1967, FOURIER SERIES MODER, V2
  • [9] HERZ CS, 1964, 2 PROBLEMS SPE UNPUB
  • [10] Disjointness preserving operators between little Lipschitz algebras
    Jimenez-Vargas, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) : 984 - 993