Using helium as background gas to avoid hydrogen brittleness for MgB2 film fabrication on niobium substrate by HPCVD

被引:2
作者
Guo, Xin [1 ,2 ]
Ni, Zhimao [1 ,2 ]
Chen, Lizhi [1 ,2 ]
Hu, Hui [3 ,4 ]
Yang, Can [3 ,4 ]
Feng, Qingrong [3 ,4 ]
Liu, Kexin [1 ,2 ]
机构
[1] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[2] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[3] Peking Univ, Appl Superconduct Res Ctr, Sch Phys, Beijing 100871, Peoples R China
[4] Peking Univ, Appl Superconduct Res Ctr, State Key Lab Artificial Struct & Mesoscop Phys, Beijing 100871, Peoples R China
来源
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS | 2016年 / 524卷
基金
中国国家自然科学基金;
关键词
MgB2; Superconducting RF cavity; HPCVD; Hydrogen brittleness; THIN-FILMS; SUPERCONDUCTIVITY; DEPOSITION; SAPPHIRE; CAVITIES; GROWTH;
D O I
10.1016/j.physc.2016.02.021
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnesium diboride has shown potential as an alternative material for the application of superconducting RF cavities. However, if MgB2 films are fabricated on niobium substrates with HPCVD method, hydrogen brittleness will cause cracks on MgB2 film when it is bent. In this work, we have investigated the possibility of depositing MgB2 film on niobium in other background gases rather than hydrogen to avoid hydrogen brittleness. Though MgB2 films fabricated in nitrogen and argon have impurities and show poor superconducting properties, the MgB2 film fabricated in helium has similar morphology and superconducting properties of that prepared in hydrogen and no cracks are observed after bending. The problem of hydrogen brittleness can be solved by using helium as the background gas when fabricating MgB2 films on niobium substrates. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:13 / 17
页数:5
相关论文
共 27 条
[1]   Growth of strongly biaxially aligned MgB2 thin films on sapphire by postannealing of amorphous precursors [J].
Berenov, A ;
Lockman, Z ;
Qi, X ;
MacManus-Driscoll, JL ;
Bugoslavsky, Y ;
Cohen, LF ;
Jo, MH ;
Stelmashenko, NA ;
Tsaneva, VN ;
Kambara, M ;
Babu, NH ;
Cardwell, DA ;
Blamire, MG .
APPLIED PHYSICS LETTERS, 2001, 79 (24) :4001-4003
[2]   Temperature dependence of the superheating field for superconductors in the high-κ London limit [J].
Catelani, G. ;
Sethna, James P. .
PHYSICAL REVIEW B, 2008, 78 (22)
[3]   Deposition of MgB2 superconducting films on different metal substrates [J].
Chen Li-Ping ;
Li Fen ;
Guo Tao ;
Zhuang Cheng-Gang ;
Yao Dan ;
Ding Li-Li ;
Zhang Kai-Cheng ;
Gan Zi-Zhao ;
Xiong Guang-Cheng ;
Feng Qing-Rong .
CHINESE PHYSICS LETTERS, 2007, 24 (07) :2074-2076
[4]   Magnesium diboride superconducting RF resonant cavities for high energy particle acceleration [J].
Collings, EW ;
Sumption, MD ;
Tajima, T .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2004, 17 (09) :S595-S601
[5]  
Eremee G., 2009, P 14 INT C RF SUP BE
[6]   HYDROGEN EMBRITTLEMENT IN SINGLE-CRYSTAL AND POLY-CRYSTAL NIOBIUM [J].
FARAHANI, MM ;
ATTIA, F ;
SALAMA, K .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1981, 12 (04) :631-638
[7]  
Geng R.L., 2007, P PART ACC C PAC 200
[8]   MgB2 films fabricated on molybdenum substrate by hybrid physical-chemical vapor deposition for superconducting RF cavity applications [J].
He, Fa ;
Xie, Da-tao ;
Feng, Qing-rong ;
Liu, Ke-xin .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2012, 25 (06)
[9]   Microstructure of MgB2 thin film deposited on r-plane sapphire substrate by co-evaporation method [J].
Kang, S. G. ;
Park, S. C. ;
Chung, J. -K. ;
Jeong, D. G. ;
Kim, C. -J. ;
Kim, C. J. .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2009, 469 (15-20) :1571-1573
[10]   A comparative study of the dendritic avalanche in MgB2 thin films synthesized by pulsed laser deposition and hybrid physical chemical vapor deposition methods [J].
Lee, Jae-Yeap ;
Lee, Hu-Jong ;
Lee, Sung-Ik ;
Zhuang, C. G. ;
Wang, Y. Z. ;
Feng, Q. R. ;
Gan, Z. Z. ;
Xi, X. X. ;
Choi, Eun-Mi ;
Cho, Jae-Hun ;
Jo, Young-Hun .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (08)