Big Data in Cardiology: State-of-Art and Future Prospects

被引:15
作者
Dai, Haijiang [1 ,2 ]
Younis, Arwa [3 ]
Kong, Jude Dzevela [2 ]
Puce, Luca [4 ]
Jabbour, Georges [5 ]
Yuan, Hong [1 ]
Bragazzi, Nicola Luigi [2 ,4 ,6 ,7 ]
机构
[1] Cent South Univ, Xiangya Hosp 3, Dept Cardiol, Changsha, Peoples R China
[2] York Univ, Dept Math & Stat, Lab Ind & Appl Math LIAM, Toronto, ON, Canada
[3] Univ Rochester, Clin Cardiovasc Res Ctr, Med Ctr, Rochester, NY USA
[4] Univ Genoa, Dept Neurosci Rehabil Ophthalmol Genet Maternal &, Genoa, Italy
[5] Qatar Univ, Coll Educ, Phys Educ Dept, Doha, Qatar
[6] Univ Genoa, Postgrad Sch Publ Hlth, Dept Hlth Sci, Genoa, Italy
[7] Univ Leeds, Chapel Allerton Hosp, Leeds Inst Mol Med, NIHR Leeds Musculoskeletal Biomed Res Unit,Sect Mu, Leeds, England
关键词
Big Data; epidemiological registries; high-throughput technologies; wearable technologies; non-conventional data streams; cardiology; ARTIFICIAL-INTELLIGENCE; RISK-FACTORS; HYPERTROPHIC CARDIOMYOPATHY; CARDIOVASCULAR-DISEASES; QUALITY IMPROVEMENT; PRECISION MEDICINE; NATIONAL HEART; GLOBAL BURDEN; GO RED; HEALTH;
D O I
10.3389/fcvm.2022.844296
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiological disorders contribute to a significant portion of the global burden of disease. Cardiology can benefit from Big Data, which are generated and released by different sources and channels, like epidemiological surveys, national registries, electronic clinical records, claims-based databases (epidemiological Big Data), wet-lab, and next-generation sequencing (molecular Big Data), smartphones, smartwatches, and other mobile devices, sensors and wearable technologies, imaging techniques (computational Big Data), non-conventional data streams such as social networks, and web queries (digital Big Data), among others. Big Data is increasingly having a more and more relevant role, being highly ubiquitous and pervasive in contemporary society and paving the way for new, unprecedented perspectives in biomedicine, including cardiology. Big Data can be a real paradigm shift that revolutionizes cardiological practice and clinical research. However, some methodological issues should be properly addressed (like recording and association biases) and some ethical issues should be considered (such as privacy). Therefore, further research in the field is warranted.
引用
收藏
页数:13
相关论文
共 89 条
[11]   Accuracy and readability of cardiovascular entries on Wikipedia: are they reliable learning resources for medical students? [J].
Azer, Samy A. ;
AlSwaidan, Nourah M. ;
Alshwairikh, Lama A. ;
AlShammari, Jumana M. .
BMJ OPEN, 2015, 5 (10)
[12]   Network medicine -: From obesity to the "Diseasome'' [J].
Barabasi, Albert-Laszlo .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (04) :404-407
[13]   Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach [J].
Barbieri, Sebastiano ;
Mehta, Suneela ;
Wu, Billy ;
Bharat, Chrianna ;
Poppe, Katrina ;
Jorm, Louisa ;
Jackson, Rod .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2022, 51 (03) :933-944
[14]   Implementing Machine Learning in Interventional Cardiology: The Benefits Are Worth the Trouble [J].
Ben Ali, Walid ;
Pesaranghader, Ahmad ;
Avram, Robert ;
Overtchouk, Pavel ;
Perrin, Nils ;
Laffite, Stephane ;
Cartier, Raymond ;
Ibrahim, Reda ;
Modine, Thomas ;
Hussin, Julie G. .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
[15]   2017 Roadmap for Innovation-ACC Health Policy Statement on Healthcare Transformation in the Era of Digital Health, Big Data, and Precision Health A Report of the American College of Cardiology Task Force on Health Policy Statements and Systems of Care [J].
Bhavnani, Sanjeev P. ;
Parakh, Kapil ;
Atreja, Ashish ;
Druz, Regina ;
Graham, Garth N. ;
Hayek, Salim S. ;
Krumholz, Harlan M. ;
Maddox, Thomas M. ;
Majmudar, Maulik D. ;
Rumsfeld, John S. ;
Shah, Bimal R. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 70 (21) :2696-2718
[16]  
Brindis R G, 2001, J Am Coll Cardiol, V37, P2240, DOI 10.1016/S0735-1097(01)01372-9
[17]   Cardiac rehabilitation and all-causemortality in patients with heart failure: a retrospective cohort study [J].
Buckley, Benjamin J. R. ;
Harrison, Stephanie L. ;
Fazio-Eynullayeva, Elnara ;
Underhill, Paula ;
Sankaranarayanan, Rajiv ;
Wright, David J. ;
Thijssen, Dick H. J. ;
Lip, Gregory Y. H. .
EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2021, 28 (15) :1704-1710
[18]   Exercise-Based Cardiac Rehabilitation and All-Cause Mortality Among Patients With Atrial Fibrillation [J].
Buckley, Benjamin J. R. ;
Harrison, Stephanie L. ;
Fazio-Eynullayeva, Elnara ;
Underhill, Paula ;
Lane, Deirdre A. ;
Thijssen, Dick H. J. ;
Lip, Gregory Y. H. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (12)
[19]   International Consortium for Health Outcomes Measurement (ICHOM): Standardized Patient-Centered Outcomes Measurement Set for Heart Failure Patients [J].
Burns, Daniel J. P. ;
Arora, Jason ;
Okunade, Oluwakemi ;
Beltrame, John F. ;
Bernardez-Pereira, Sabrina ;
Crespo-Leiro, Marisa G. ;
Filippatos, Gerasimos S. ;
Hardman, Suzanna ;
Hoes, Arno W. ;
Hutchison, Stephen ;
Jessup, Mariell ;
Kinsella, Tina ;
Knapton, Michael ;
Lam, Carolyn S. P. ;
Masoudi, Frederick A. ;
McIntyre, Hugh ;
Mindham, Richard ;
Morgan, Louise ;
Otterspoor, Luuk ;
Parker, Victoria ;
Persson, Hans E. ;
Pinnock, Claude ;
Reid, Christopher M. ;
Riley, Jillian ;
Stevenson, Lynne W. ;
McDonagh, Theresa A. .
JACC-HEART FAILURE, 2020, 8 (03) :212-222
[20]   Flexible Wearable Sensors for Cardiovascular Health Monitoring [J].
Chen, Shuwen ;
Qi, Jiaming ;
Fan, Shicheng ;
Qiao, Zheng ;
Yeo, Joo Chuan ;
Lim, Chwee Teck .
ADVANCED HEALTHCARE MATERIALS, 2021, 10 (17)